Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,323 Bytes
eebae35 9d8c0ee eebae35 e0979ff eebae35 5a8758c eebae35 1e7ce4e eebae35 838de7f eebae35 5a8758c 9d8c0ee eebae35 5a8758c bb838fb 5a8758c 27ed10b 5a8758c c960ca3 5a8758c 0cdd4ce 2ea8fc9 b98e999 eebae35 9d8c0ee a43098c ef3d843 9d8c0ee eebae35 9d8c0ee eebae35 9d8c0ee eebae35 9d8c0ee eebae35 9d8c0ee eebae35 9d8c0ee eebae35 668ad22 9d8c0ee eebae35 9d8c0ee eebae35 cea1e2e eebae35 9d8c0ee eebae35 9d8c0ee eebae35 9d8c0ee eebae35 9d8c0ee eebae35 db8ca22 9d8c0ee eebae35 9d8c0ee eebae35 9d8c0ee eebae35 593a050 9d8c0ee eebae35 9d8c0ee eebae35 9d8c0ee 0cdd4ce 9d8c0ee 5a8758c 9d8c0ee e470c5b 497be0e 63fe1f8 9d8c0ee eebae35 593a050 9d8c0ee e470c5b 9d8c0ee eebae35 e4dc99d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
import random
import tempfile
from typing import Any, List, Union
import spaces
import gradio as gr
import numpy as np
import torch
# from gradio_image_prompter import ImagePrompter
# from gradio_litmodel3d import LitModel3D
from huggingface_hub import snapshot_download
from PIL import Image
import trimesh
from skimage import measure
from detailgen3d.pipelines.pipeline_detailgen3d import DetailGen3DPipeline
from detailgen3d.inference_utils import generate_dense_grid_points
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
# Constants
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
DTYPE = torch.bfloat16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MARKDOWN = """
## Generating geometry details guided by reference image with [DetailGen3D](https://detailgen3d.github.io/DetailGen3D/)
1. Upload a detailed image of the frontal view and a coarse model. Then clik "Generate Details" to generate the refined result.
2. If you find the generated 3D scene satisfactory, download it by clicking the "Download GLB" button.
3. If you want the refine result to be more consistent with the image, please manually increase the CFG strength.
"""
EXAMPLES = [
[
"assets/image/503d193a-1b9b-4685-b05f-00ac82f93d7b.png",
"assets/model/503d193a-1b9b-4685-b05f-00ac82f93d7b.glb",
42,
False,
],
[
"assets/image/34933195-9c2c-4271-8d31-a28bc5348b7a.png",
"assets/model/34933195-9c2c-4271-8d31-a28bc5348b7a.glb",
2131379184,
False,
],
[
"assets/image/a5d09c66-1617-465c-aec9-431f48d9a7e1.png",
"assets/model/a5d09c66-1617-465c-aec9-431f48d9a7e1.glb",
42,
False,
],
[
"assets/image/cb7e6c4a-b4dd-483c-9789-3d4887ee7434.png",
"assets/model/cb7e6c4a-b4dd-483c-9789-3d4887ee7434.glb",
42,
False,
],
[
"assets/image/e799e6b4-3b47-40e0-befb-b156af8758ad.png",
"assets/model/e799e6b4-3b47-40e0-befb-b156af8758ad.glb",
42,
False,
],
[
"assets/image/100.png",
"assets/model/100.glb",
42,
False,
],
]
os.makedirs(TMP_DIR, exist_ok=True)
local_dir = "pretrained_weights/DetailGen3D"
snapshot_download(repo_id="VAST-AI/DetailGen3D", local_dir=local_dir)
pipeline = DetailGen3DPipeline.from_pretrained(
local_dir
).to(DEVICE, dtype=DTYPE)
def load_mesh(mesh_path, num_pc=20480):
mesh = trimesh.load(mesh_path,force="mesh")
center = mesh.bounding_box.centroid
mesh.apply_translation(-center)
scale = max(mesh.bounding_box.extents)
mesh.apply_scale(1.9 / scale)
surface, face_indices = trimesh.sample.sample_surface(mesh, 1000000,)
normal = mesh.face_normals[face_indices]
rng = np.random.default_rng()
ind = rng.choice(surface.shape[0], num_pc, replace=False)
surface = torch.FloatTensor(surface[ind])
normal = torch.FloatTensor(normal[ind])
surface = torch.cat([surface, normal], dim=-1).unsqueeze(0).cuda()
return surface
@torch.no_grad()
@torch.autocast(device_type=DEVICE)
def run_detailgen3d(
pipeline,
image,
mesh,
seed,
num_inference_steps,
guidance_scale,
):
surface = load_mesh(mesh)
# image = Image.open(image).convert("RGB")
batch_size = 1
# sample query points for decoding
box_min = np.array([-1.005, -1.005, -1.005])
box_max = np.array([1.005, 1.005, 1.005])
sampled_points, grid_size, bbox_size = generate_dense_grid_points(
bbox_min=box_min, bbox_max=box_max, octree_depth=8, indexing="ij"
)
sampled_points = torch.FloatTensor(sampled_points).to(DEVICE, dtype=DTYPE)
sampled_points = sampled_points.unsqueeze(0).repeat(batch_size, 1, 1)
# inference pipeline
sample = pipeline.vae.encode(surface).latent_dist.sample()
occ = pipeline(image, latents=sample, sampled_points=sampled_points, guidance_scale=guidance_scale, noise_aug_level=0, num_inference_steps=num_inference_steps).samples[0]
# marching cubes
grid_logits = occ.view(grid_size).cpu().numpy()
vertices, faces, normals, _ = measure.marching_cubes(
grid_logits, 0, method="lewiner"
)
vertices = vertices / grid_size * bbox_size + box_min
mesh = trimesh.Trimesh(vertices.astype(np.float32), np.ascontiguousarray(faces))
return mesh
@spaces.GPU(duration=180)
@torch.no_grad()
@torch.autocast(device_type=DEVICE)
def run_refinement(
rgb_image: Any,
mesh: Any,
seed: int,
randomize_seed: bool = False,
num_inference_steps: int = 50,
guidance_scale: float = 4.0,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
scene = run_detailgen3d(
pipeline,
rgb_image,
mesh,
seed,
num_inference_steps,
guidance_scale,
)
_, tmp_path = tempfile.mkstemp(suffix=".glb", prefix="detailgen3d_", dir=TMP_DIR)
scene.export(tmp_path)
torch.cuda.empty_cache()
return tmp_path, tmp_path, seed
# Demo
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
with gr.Row():
# image_prompts = ImagePrompter(label="Input Image", type="pil")
image_prompts = gr.Image(label="Example Image", type="pil")
with gr.Accordion("Generation Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
guidance_scale = gr.Slider(
label="CFG scale",
minimum=0.0,
maximum=50.0,
step=0.1,
value=10.0,
)
gen_button = gr.Button("Generate Details", variant="primary")
with gr.Column():
mesh = gr.Model3D(label="Input Coarse Model",camera_position=(90,90,3))
# model_output = LitModel3D(label="Generated GLB", exposure=1.0, height=500,camera_position=(90,90,3))
model_output = gr.Model3D(label="Generated GLB", camera_position=(90,90,3))
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
with gr.Row():
gr.Examples(
examples=EXAMPLES,
fn=run_refinement,
inputs=[image_prompts, mesh, seed, randomize_seed],
outputs=[model_output, download_glb, seed],
cache_examples=False,
)
gen_button.click(
run_refinement,
inputs=[
image_prompts,
mesh,
seed,
randomize_seed,
num_inference_steps,
guidance_scale,
],
outputs=[model_output, download_glb, seed],
).then(lambda: gr.Button(interactive=True), outputs=[download_glb])
demo.launch() |