Spaces:
Sleeping
Sleeping
import os | |
from transformers import AutoModel, AutoTokenizer | |
import torch | |
# Load model and tokenizer | |
# model_name = "ucaslcl/GOT-OCR2_0" | |
model_name = "srimanth-d/GOT_CPU" | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_name, trust_remote_code=True, return_tensors='pt' | |
) | |
# Load the model | |
model = AutoModel.from_pretrained( | |
model_name, | |
trust_remote_code=True, | |
low_cpu_mem_usage=True, | |
use_safetensors=True, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
# Ensure the model is in evaluation mode and loaded on CPU | |
device = torch.device("cpu") | |
dtype = torch.float32 # Use float32 on CPU | |
model = model.eval().to(device) | |
# OCR function | |
def extract_text_got(uploaded_file): | |
"""Use GOT-OCR2.0 model to extract text from the uploaded image.""" | |
temp_file_path = 'temp_image.jpg' | |
try: | |
# Save the uploaded file temporarily | |
with open(temp_file_path, 'wb') as temp_file: | |
temp_file.write(uploaded_file.read()) | |
print(f"Processing image from path: {temp_file_path}") # Debug info | |
ocr_types = ['ocr', 'format'] | |
fine_grained_options = ['ocr', 'format'] | |
color_options = ['red', 'green', 'blue'] | |
box = [10, 10, 100, 100] # Example box for demonstration | |
multi_crop_types = ['ocr', 'format'] | |
results = [] | |
# Run basic OCR types | |
for ocr_type in ocr_types: | |
with torch.no_grad(): | |
print(f"Running basic OCR with type: {ocr_type}") # Debug info | |
outputs = model.chat(tokenizer, temp_file_path, ocr_type=ocr_type) | |
# Debug outputs | |
print(f"Outputs for {ocr_type}: {outputs}") | |
if isinstance(outputs, list) and outputs[0].strip(): | |
return outputs[0].strip() # Return if successful | |
results.append(outputs[0].strip() if outputs else "No result") | |
# Try FINE-GRAINED OCR with box options | |
for ocr_type in fine_grained_options: | |
with torch.no_grad(): | |
print(f"Running fine-grained OCR with box, type: {ocr_type}") # Debug info | |
outputs = model.chat(tokenizer, temp_file_path, ocr_type=ocr_type, ocr_box=box) | |
print(f"Outputs for {ocr_type} with box: {outputs}") | |
if isinstance(outputs, list) and outputs[0].strip(): | |
return outputs[0].strip() # Return if successful | |
results.append(outputs[0].strip() if outputs else "No result") | |
# Try FINE-GRAINED OCR with color options | |
for ocr_type in fine_grained_options: | |
for color in color_options: | |
with torch.no_grad(): | |
print(f"Running fine-grained OCR with color {color}, type: {ocr_type}") # Debug info | |
outputs = model.chat(tokenizer, temp_file_path, ocr_type=ocr_type, ocr_color=color) | |
print(f"Outputs for {ocr_type} with color {color}: {outputs}") | |
if isinstance(outputs, list) and outputs[0].strip(): | |
return outputs[0].strip() # Return if successful | |
results.append(outputs[0].strip() if outputs else "No result") | |
# Try MULTI-CROP OCR | |
for ocr_type in multi_crop_types: | |
with torch.no_grad(): | |
print(f"Running multi-crop OCR with type: {ocr_type}") # Debug info | |
outputs = model.chat_crop(tokenizer, temp_file_path, ocr_type=ocr_type) | |
print(f"Outputs for multi-crop {ocr_type}: {outputs}") | |
if isinstance(outputs, list) and outputs[0].strip(): | |
return outputs[0].strip() # Return if successful | |
results.append(outputs[0].strip() if outputs else "No result") | |
# Return combined results or no text found message | |
if all(not text for text in results): | |
return "No text extracted." | |
else: | |
return "\n".join(results) | |
except Exception as e: | |
return f"Error during text extraction: {str(e)}" | |
finally: | |
# Clean up temporary file | |
if os.path.exists(temp_file_path): | |
os.remove(temp_file_path) | |
print(f"Temporary file {temp_file_path} removed.") # Debug info | |