UniquePratham's picture
Update app.py
1a5d3d0 verified
raw
history blame
8.57 kB
import streamlit as st
from transformers import AutoModel, AutoTokenizer, Qwen2VLForConditionalGeneration, AutoProcessor
from surya.ocr import run_ocr
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
from PIL import Image
import torch
import tempfile
import os
import re
import base64
from groq import Groq
# Page configuration
st.set_page_config(page_title="DualTextOCRFusion", page_icon="πŸ”", layout="wide")
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load Surya OCR Models (English + Hindi)
det_processor, det_model = load_det_processor(), load_det_model()
det_model.to(device)
rec_model, rec_processor = load_rec_model(), load_rec_processor()
rec_model.to(device)
# Load GOT Models
@st.cache_resource
def init_got_model():
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
return model.eval(), tokenizer
@st.cache_resource
def init_got_gpu_model():
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
return model.eval().cuda(), tokenizer
# Load Qwen Model
@st.cache_resource
def init_qwen_model():
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", device_map="cpu", torch_dtype=torch.float16)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
return model.eval(), processor
# Text Cleaning AI - Clean spaces, handle dual languages
def clean_extracted_text(text):
# Remove extra spaces
cleaned_text = re.sub(r'\s+', ' ', text).strip()
cleaned_text = re.sub(r'\s([?.!,])', r'\1', cleaned_text)
return cleaned_text
# Polish the text using a model
def polish_text_with_ai(cleaned_text):
prompt = f"Remove unwanted spaces between and inside words to join incomplete words, creating a meaningful sentence in either Hindi, English, or Hinglish without altering any words from the given extracted text. Then, return the corrected text with adjusted spaces, keeping it as close to the original as possible, along with relevant details or insights that an AI can provide about the extracted text. Extracted Text : {cleaned_text}"
client = Groq(api_key="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")
chat_completion = client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a pedantic sentence corrector. Remove extra spaces between and within words to make the sentence meaningful in English, Hindi, or Hinglish, according to the context of the sentence, without changing any words."
},
{
"role": "user",
"content": prompt,
}
],
model="gemma2-9b-it",
)
polished_text = chat_completion.choices[0].message.content
return polished_text
# Extract text using GOT
def extract_text_got(image_file, model, tokenizer):
return model.chat(tokenizer, image_file, ocr_type='ocr')
# Extract text using Qwen
def extract_text_qwen(image_file, model, processor):
try:
image = Image.open(image_file).convert('RGB')
conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Extract text from this image."}]}]
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(text=[text_prompt], images=[image], return_tensors="pt")
output_ids = model.generate(**inputs)
output_text = processor.batch_decode(output_ids, skip_special_tokens=True)
return output_text[0] if output_text else "No text extracted from the image."
except Exception as e:
return f"An error occurred: {str(e)}"
# Highlight keyword search
def highlight_text(text, search_term):
if not search_term: # If no search term is provided, return the original text
return text
# Use a regular expression to search for the term, case insensitive
pattern = re.compile(re.escape(search_term), re.IGNORECASE)
# Highlight matched terms with yellow background
return pattern.sub(lambda m: f'<span style="background-color: yellow;">{m.group()}</span>', text)
# Title and UI
st.title("DualTextOCRFusion - πŸ”")
st.header("OCR Application - Multimodel Support")
st.write("Upload an image for OCR using various models, with support for English, Hindi, and Hinglish.")
# Sidebar Configuration
st.sidebar.header("Configuration")
model_choice = st.sidebar.selectbox("Select OCR Model:", ("GOT_CPU", "GOT_GPU", "Qwen", "Surya (English+Hindi)"))
# Upload Section
uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
# Input from clipboard
if st.sidebar.button("Paste from Clipboard"):
try:
clipboard_data = st.experimental_get_clipboard()
if clipboard_data:
# Assuming clipboard data is base64 encoded image
image_data = base64.b64decode(clipboard_data)
uploaded_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
uploaded_file.write(image_data)
uploaded_file.seek(0)
except:
st.sidebar.warning("Clipboard data is not an image.")
# Input from camera
camera_file = st.sidebar.camera_input("Capture from Camera")
if camera_file:
uploaded_file = camera_file
# Predict button
predict_button = st.sidebar.button("Predict")
# Main columns
col1, col2 = st.columns([2, 1])
# Display image preview
if uploaded_file:
image = Image.open(uploaded_file)
with col1:
col1.image(image, caption='Uploaded Image', use_column_width=False, width=300)
# Handle predictions
if predict_button and uploaded_file:
with st.spinner("Processing..."):
# Save uploaded image
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
temp_file.write(uploaded_file.getvalue())
temp_file_path = temp_file.name
image = Image.open(temp_file_path)
image = image.convert("RGB")
if model_choice == "GOT_CPU":
got_model, tokenizer = init_got_model()
extracted_text = extract_text_got(temp_file_path, got_model, tokenizer)
elif model_choice == "GOT_GPU":
got_gpu_model, tokenizer = init_got_gpu_model()
extracted_text = extract_text_got(temp_file_path, got_gpu_model, tokenizer)
elif model_choice == "Qwen":
qwen_model, qwen_processor = init_qwen_model()
extracted_text = extract_text_qwen(temp_file_path, qwen_model, qwen_processor)
elif model_choice == "Surya (English+Hindi)":
langs = ["en", "hi"]
predictions = run_ocr([image], [langs], det_model, det_processor, rec_model, rec_processor)
text_list = re.findall(r"text='(.*?)'", str(predictions[0]))
extracted_text = ' '.join(text_list)
# Clean extracted text
cleaned_text = clean_extracted_text(extracted_text)
# Optionally, polish text with AI model for better language flow
polished_text = polish_text_with_ai(cleaned_text) if model_choice in ["GOT_CPU", "GOT_GPU"] else cleaned_text
# Delete temp file
if os.path.exists(temp_file_path):
os.remove(temp_file_path)
# Display extracted text and search functionality
st.subheader("Extracted Text (Cleaned & Polished)")
st.markdown(polished_text, unsafe_allow_html=True)
# Input box for real-time search
search_query = st.text_input("Search in extracted text:", key="search_query", placeholder="Type to search...")
# Update results dynamically based on the search term
if search_query:
# Highlight the search term in the text
highlighted_text = highlight_text(polished_text, search_query)
st.markdown("### Highlighted Search Results:")
st.markdown(highlighted_text, unsafe_allow_html=True)
else:
st.markdown("### Extracted Text:")
st.markdown(polished_text)