Spaces:
Running
Running
File size: 6,116 Bytes
3cb2a3f b16db73 a0652de b16db73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import streamlit as st
from transformers import AutoModel, AutoTokenizer, Qwen2VLForConditionalGeneration, AutoProcessor
from surya.ocr import run_ocr
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
from PIL import Image
import torch
import tempfile
import os
import re
# Page configuration
st.set_page_config(page_title="OCR Application", page_icon="🖼️", layout="wide")
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load Surya OCR Models (English + Hindi)
det_processor, det_model = load_det_processor(), load_det_model()
det_model.to(device)
rec_model, rec_processor = load_rec_model(), load_rec_processor()
rec_model.to(device)
# Load GOT Models
@st.cache_resource
def init_got_model():
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
return model.eval(), tokenizer
@st.cache_resource
def init_got_gpu_model():
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
return model.eval().cuda(), tokenizer
# Load Qwen Model
@st.cache_resource
def init_qwen_model():
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", device_map="cpu", torch_dtype=torch.float16)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
return model.eval(), processor
# Extract text using GOT
def extract_text_got(image_file, model, tokenizer):
return model.chat(tokenizer, image_file, ocr_type='ocr')
# Extract text using Qwen
def extract_text_qwen(image_file, model, processor):
try:
image = Image.open(image_file).convert('RGB')
conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Extract text from this image."}]}]
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(text=[text_prompt], images=[image], return_tensors="pt")
output_ids = model.generate(**inputs)
output_text = processor.batch_decode(output_ids, skip_special_tokens=True)
return output_text[0] if output_text else "No text extracted from the image."
except Exception as e:
return f"An error occurred: {str(e)}"
# Text Cleaning AI - Clean spaces, handle dual languages
def clean_extracted_text(text):
# Remove extra spaces
cleaned_text = re.sub(r'\s+', ' ', text).strip()
cleaned_text = re.sub(r'\s([?.!,])', r'\1', cleaned_text)
return cleaned_text
# Highlight keyword search
def highlight_text(text, search_term):
if not search_term:
return text
pattern = re.compile(re.escape(search_term), re.IGNORECASE)
return pattern.sub(lambda m: f'<span style="background-color: yellow;">{m.group()}</span>', text)
# Title and UI
st.title("OCR Application - Multimodel Support")
st.write("Upload an image for OCR using various models, with support for English, Hindi, and Hinglish.")
# Sidebar Configuration
st.sidebar.header("Configuration")
model_choice = st.sidebar.selectbox("Select OCR Model:", ("GOT_CPU", "GOT_GPU", "Qwen", "Surya (English+Hindi)"))
# Upload Section
uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
# Predict button
predict_button = st.sidebar.button("Predict")
# Main columns
col1, col2 = st.columns([2, 1])
# Display image preview
if uploaded_file:
image = Image.open(uploaded_file)
with col1:
col1.image(image, caption='Uploaded Image', use_column_width=False, width=300)
# Handle predictions
if predict_button and uploaded_file:
with st.spinner("Processing..."):
# Save uploaded image
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
temp_file.write(uploaded_file.getvalue())
temp_file_path = temp_file.name
image = Image.open(temp_file_path)
image = image.convert("RGB")
if model_choice == "GOT_CPU":
got_model, tokenizer = init_got_model()
extracted_text = extract_text_got(temp_file_path, got_model, tokenizer)
elif model_choice == "GOT_GPU":
got_gpu_model, tokenizer = init_got_gpu_model()
extracted_text = extract_text_got(temp_file_path, got_gpu_model, tokenizer)
elif model_choice == "Qwen":
qwen_model, qwen_processor = init_qwen_model()
extracted_text = extract_text_qwen(temp_file_path, qwen_model, qwen_processor)
elif model_choice == "Surya (English+Hindi)":
langs = ["en", "hi"]
predictions = run_ocr([image], [langs], det_model, det_processor, rec_model, rec_processor)
text_list = re.findall(r"text='(.*?)'", str(predictions[0]))
extracted_text = ' '.join(text_list)
# Clean extracted text
cleaned_text = clean_extracted_text(extracted_text)
# Delete temp file
if os.path.exists(temp_file_path):
os.remove(temp_file_path)
# Display extracted text and search functionality
st.subheader("Extracted Text (Cleaned)")
st.markdown(cleaned_text, unsafe_allow_html=True)
search_query = st.text_input("Search in extracted text:", key="search_query", placeholder="Type to search...")
if search_query:
highlighted_text = highlight_text(cleaned_text, search_query)
st.markdown("### Highlighted Search Results:")
st.markdown(highlighted_text, unsafe_allow_html=True)
else:
st.markdown("### Extracted Text:")
st.markdown(cleaned_text, unsafe_allow_html=True)
|