Spaces:
Running
Running
File size: 8,759 Bytes
93bd871 3cb2a3f b16db73 aa47a7c 0fbad84 42cb48e 137d741 0fbad84 b16db73 93bd871 b16db73 93bd871 b16db73 93bd871 b16db73 93bd871 b16db73 93bd871 b16db73 93bd871 b16db73 93bd871 b16db73 0efdb28 93bd871 0efdb28 93bd871 42cb48e 137d741 93bd871 42cb48e aa47a7c bac8e56 42cb48e 1a5d3d0 0efdb28 b16db73 93bd871 b16db73 93bd871 b16db73 137d741 93bd871 b16db73 137d741 b16db73 137d741 b16db73 137d741 b16db73 93bd871 b16db73 55c903d 7da5361 b16db73 93bd871 b16db73 93bd871 bac8e56 d6d57fb 1c8f168 0fbad84 93bd871 bac8e56 93bd871 bac8e56 93bd871 bac8e56 93bd871 bac8e56 aa47a7c 93bd871 aa47a7c 93bd871 aa47a7c 93bd871 aa47a7c 26ba106 93bd871 aa47a7c 26ba106 93bd871 26ba106 b16db73 bac8e56 0efdb28 26ba106 bac8e56 137d741 93bd871 bac8e56 137d741 bac8e56 b16db73 93bd871 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import io
import streamlit as st
from transformers import AutoModel, AutoTokenizer, Qwen2VLForConditionalGeneration, AutoProcessor
from PIL import Image
import torch
import os
import re
import json
import io
import base64
from groq import Groq
from st_keyup import st_keyup
from st_img_pastebutton import paste
# Page configuration
st.set_page_config(page_title="DualTextOCRFusion",
page_icon="π", layout="wide")
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load GOT Models
@st.cache_resource
def init_got_model():
tokenizer = AutoTokenizer.from_pretrained(
'srimanth-d/GOT_CPU', trust_remote_code=True)
model = AutoModel.from_pretrained(
'srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
return model.eval(), tokenizer
@st.cache_resource
def init_got_gpu_model():
tokenizer = AutoTokenizer.from_pretrained(
'ucaslcl/GOT-OCR2_0', trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True,
device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
return model.eval().cuda(), tokenizer
# Load Qwen Model
@st.cache_resource
def init_qwen_model():
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct", device_map="cpu", torch_dtype=torch.float16)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
return model.eval(), processor
# Text Cleaning AI - Clean spaces, handle dual languages
def clean_extracted_text(text):
cleaned_text = re.sub(r'\s+', ' ', text).strip()
cleaned_text = re.sub(r'\s([?.!,])', r'\1', cleaned_text)
return cleaned_text
# Polish the text using a model
def polish_text_with_ai(cleaned_text):
prompt = f"Remove unwanted spaces between and inside words to join incomplete words, creating a meaningful sentence in either Hindi, English, or Hinglish without altering any words from the given extracted text. Then, return the corrected text with adjusted spaces, keeping it as close to the original as possible, along with relevant details or insights that an AI can provide about the extracted text. Extracted Text : {cleaned_text}"
client = Groq(
api_key="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")
chat_completion = client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a pedantic sentence corrector. Remove extra spaces between and within words to make the sentence meaningful in English, Hindi, or Hinglish, according to the context of the sentence, without changing any words."
},
{
"role": "user",
"content": prompt,
}
],
model="gemma2-9b-it",
)
polished_text = chat_completion.choices[0].message.content
return polished_text
# Extract text using GOT
def extract_text_got(image_file, model, tokenizer):
return model.chat(tokenizer, image_file, ocr_type='ocr')
# Extract text using Qwen
def extract_text_qwen(image_file, model, processor):
try:
image = Image.open(image_file).convert('RGB')
conversation = [{"role": "user", "content": [{"type": "image"}, {
"type": "text", "text": "Extract text from this image."}]}]
text_prompt = processor.apply_chat_template(
conversation, add_generation_prompt=True)
inputs = processor(text=[text_prompt], images=[
image], return_tensors="pt")
output_ids = model.generate(**inputs)
output_text = processor.batch_decode(
output_ids, skip_special_tokens=True)
return output_text[0] if output_text else "No text extracted from the image."
except Exception as e:
return f"An error occurred: {str(e)}"
# Function to highlight the keyword in the text
def highlight_text(text, search_term):
if not search_term: # If no search term is provided, return the original text
return text
# Use a regular expression to search for the term, case insensitive
pattern = re.compile(re.escape(search_term), re.IGNORECASE)
# Highlight matched terms with yellow background
return pattern.sub(lambda m: f'<span style="background-color: yellow;">{m.group()}</span>', text)
# Title and UI
st.title("DualTextOCRFusion - π")
st.header("OCR Application - Multimodel Support")
st.write("Upload an image for OCR using various models, with support for English, Hindi, and Hinglish.")
# Sidebar Configuration
st.sidebar.header("Configuration")
model_choice = st.sidebar.selectbox(
"Select OCR Model:", ("GOT_CPU", "GOT_GPU", "Qwen"))
# Upload Section
uploaded_file = st.sidebar.file_uploader(
"Choose an image...", type=["png", "jpg", "jpeg"])
# Input from clipboard
# Paste image button
image_data = paste(label="Paste From Clipboard", key="image_clipboard")
if image_data is not None:
clipboard_use = True
header, encoded = image_data.split(",", 1)
decoded_bytes = base64.b64decode(encoded)
img_stream = io.BytesIO(decoded_bytes)
uploaded_file = img_stream
# Input from camera
camera_file = st.sidebar.camera_input("Capture from Camera")
if camera_file:
uploaded_file = camera_file
# Predict button
predict_button = st.sidebar.button("Predict")
# Main columns
col1, col2 = st.columns([2, 1])
# Display image preview
if uploaded_file:
image = Image.open(uploaded_file)
with col1:
col1.image(image, caption='Uploaded Image',
use_column_width=False, width=300)
# Save uploaded image to 'images' folder
images_dir = 'images'
os.makedirs(images_dir, exist_ok=True)
image_path = os.path.join(
images_dir, "temp_file.jpg" if clipboard_use else uploaded_file.name)
with open(image_path, 'wb') as f:
f.write(uploaded_file.getvalue())
# Check if the result already exists
results_dir = 'results'
os.makedirs(results_dir, exist_ok=True)
result_path = os.path.join(
results_dir, "temp_file_result.json" if clipboard_use else f"{uploaded_file.name}_result.json")
# Handle predictions
if predict_button:
if os.path.exists(result_path):
with open(result_path, 'r') as f:
result_data = json.load(f)
extracted_text = result_data["polished_text"]
else:
with st.spinner("Processing..."):
if model_choice == "GOT_CPU":
got_model, tokenizer = init_got_model()
extracted_text = extract_text_got(
image_path, got_model, tokenizer)
elif model_choice == "GOT_GPU":
got_gpu_model, tokenizer = init_got_gpu_model()
extracted_text = extract_text_got(
image_path, got_gpu_model, tokenizer)
elif model_choice == "Qwen":
qwen_model, qwen_processor = init_qwen_model()
extracted_text = extract_text_qwen(
image_path, qwen_model, qwen_processor)
# Clean and polish extracted text
cleaned_text = clean_extracted_text(extracted_text)
polished_text = polish_text_with_ai(cleaned_text) if model_choice in [
"GOT_CPU", "GOT_GPU"] else cleaned_text
# Save results to JSON file
result_data = {"extracted_text": extracted_text,
"cleaner_text": cleaned_text, "polished_text": polished_text}
with open(result_path, 'w') as f:
json.dump(result_data, f)
# Display extracted text
st.subheader("Extracted Text (Cleaned & Polished)")
st.markdown(cleaned_text, unsafe_allow_html=True)
st.markdown(polished_text, unsafe_allow_html=True)
# Search functionality
def update_search():
if search_query:
highlighted_text = highlight_text(extracted_text, search_query)
st.session_state["highlighted_result"] = highlighted_text
else:
st.session_state["highlighted_result"] = extracted_text
# Input search term with real-time update on key press
search_query = st_keyup(
"Search in extracted text:", key="search_key", on_change=update_search)
# Display highlighted results if they exist in session state
if "highlighted_result" in st.session_state:
st.markdown("### Highlighted Search Results:")
st.markdown(
st.session_state["highlighted_result"], unsafe_allow_html=True)
|