abreza's picture
init
469635f
# coding: utf-8
import os.path as osp
import imageio
import numpy as np
import pickle
import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
from .helper import mkdir, suffix
def load_image_rgb(image_path: str):
if not osp.exists(image_path):
raise FileNotFoundError(f"Image not found: {image_path}")
img = cv2.imread(image_path, cv2.IMREAD_COLOR)
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
def load_video(video_info, n_frames=-1):
reader = imageio.get_reader(video_info, "ffmpeg")
ret = []
for idx, frame_rgb in enumerate(reader):
if n_frames > 0 and idx >= n_frames:
break
ret.append(frame_rgb)
reader.close()
return ret
def contiguous(obj):
if not obj.flags.c_contiguous:
obj = obj.copy(order="C")
return obj
def resize_to_limit(img: np.ndarray, max_dim=1920, division=2):
"""
ajust the size of the image so that the maximum dimension does not exceed max_dim, and the width and the height of the image are multiples of n.
:param img: the image to be processed.
:param max_dim: the maximum dimension constraint.
:param n: the number that needs to be multiples of.
:return: the adjusted image.
"""
h, w = img.shape[:2]
# ajust the size of the image according to the maximum dimension
if max_dim > 0 and max(h, w) > max_dim:
if h > w:
new_h = max_dim
new_w = int(w * (max_dim / h))
else:
new_w = max_dim
new_h = int(h * (max_dim / w))
img = cv2.resize(img, (new_w, new_h))
# ensure that the image dimensions are multiples of n
division = max(division, 1)
new_h = img.shape[0] - (img.shape[0] % division)
new_w = img.shape[1] - (img.shape[1] % division)
if new_h == 0 or new_w == 0:
# when the width or height is less than n, no need to process
return img
if new_h != img.shape[0] or new_w != img.shape[1]:
img = img[:new_h, :new_w]
return img
def load_img_online(obj, mode="bgr", **kwargs):
max_dim = kwargs.get("max_dim", 1920)
n = kwargs.get("n", 2)
if isinstance(obj, str):
if mode.lower() == "gray":
img = cv2.imread(obj, cv2.IMREAD_GRAYSCALE)
else:
img = cv2.imread(obj, cv2.IMREAD_COLOR)
else:
img = obj
# Resize image to satisfy constraints
img = resize_to_limit(img, max_dim=max_dim, division=n)
if mode.lower() == "bgr":
return contiguous(img)
elif mode.lower() == "rgb":
return contiguous(img[..., ::-1])
else:
raise Exception(f"Unknown mode {mode}")
def load(fp):
suffix_ = suffix(fp)
if suffix_ == "npy":
return np.load(fp)
elif suffix_ == "pkl":
return pickle.load(open(fp, "rb"))
else:
raise Exception(f"Unknown type: {suffix}")
def dump(wfp, obj):
wd = osp.split(wfp)[0]
if wd != "" and not osp.exists(wd):
mkdir(wd)
_suffix = suffix(wfp)
if _suffix == "npy":
np.save(wfp, obj)
elif _suffix == "pkl":
pickle.dump(obj, open(wfp, "wb"))
else:
raise Exception("Unknown type: {}".format(_suffix))