import json import gradio as gr from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download from datasets import load_dataset from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, TASK_TEXT, SUBMIT_TEMPLATE, LLM_BENCHMARKS_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision ) from src.envs import API, EVAL_RESULTS_PATH, GOLDEN_REPO, REPO_ID, TOKEN from src.populate import get_evaluation_queue_df, get_leaderboard_df from src.submission.submit import add_new_eval from src.evaluation import evaluate import pdb def restart_space(): API.restart_space(repo_id=REPO_ID) ### Space initialisation # try: # print(EVAL_REQUESTS_PATH) # snapshot_download( # repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN # ) # except Exception: # restart_space() # try: # print(EVAL_RESULTS_PATH) # snapshot_download( # repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN # ) # except Exception: # restart_space() try: golden = load_dataset(GOLDEN_REPO, token=TOKEN) print(golden) except Exception: restart_space() task = ['Overall', 'Crossword', 'Acrostic', 'Logic_Puzzle', 'Cryptogram', 'Sudoku', 'Drop_Quote'] leaderboard_dict = {} for t in task: leaderboard_dict[t] = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, task=t) def init_leaderboard(dataframe): if dataframe is None or dataframe.empty: raise ValueError("Leaderboard DataFrame is empty or None.") # pdb.set_trace() def highlight_max_bold(s): return ['font-weight: bold' if v == s.max() and v != s.min() else '' for v in s] num_cols = dataframe.select_dtypes(include=['float']).columns styler = dataframe.style.format({col: "{:.1f}" for col in num_cols}) styler = styler.apply(highlight_max_bold, subset=num_cols) return gr.components.Dataframe( value=styler, headers=[c.name for c in fields(AutoEvalColumn)], datatype=[c.type for c in fields(AutoEvalColumn)], row_count=10, interactive=False, column_widths=[180, 60, 80, 80, 80, 80, 60], ) def eval_json(file): try: with open(file.name, 'r', encoding='utf-8') as f: data = json.load(f) tasks = ["crossword", "acrostic", "logic", "cryptogram", "sudoku", "drop"] eval_dict = {} for task in tasks: data_list = data["results"][task] golden_list = golden[task] result = evaluate(data_list, golden_list, task) eval_dict[task] = result return json.dumps(eval_dict, indent=4) except Exception as e: return str(e) demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_id="main-tabs", elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): # leaderboard = init_leaderboard(LEADERBOARD_DF) with gr.Tabs(): for i, t in enumerate(task): with gr.TabItem(t.replace("_", " "), elem_id=f"llm-benchmark-tab-table-{t}", id=i): if TASK_TEXT.get(t, None): gr.Markdown(TASK_TEXT[t], elem_classes="markdown-text") leaderboard = init_leaderboard(leaderboard_dict[t]) # with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): # gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): with gr.Row(): gr.Markdown("# ✉️✨ Submit your results here!", elem_classes="markdown-text") gr.Markdown("## Submission Template", elem_classes="markdown-text") gr.Markdown("See [submission_template.json](https://github.com/Ultramarine-spec/LR2Bench/blob/main/submission_template.json) for detail. The following is an example for the JSON structure.", elem_classes="markdown-text") gr.Markdown(SUBMIT_TEMPLATE, elem_classes="markdown-text", height=250) file_input = gr.File(label="Upload JSON File", file_types=[".json"], height=150) json_output = gr.JSON(label="Your Model Performance") # 输出 JSON 数据 submit_button = gr.Button("Submit") submit_button.click(fn=eval_json, inputs=file_input, outputs=json_output) with gr.Row(): # gr.Markdown() citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id="citation-button", show_copy_button=True, ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue(default_concurrency_limit=40).launch()