LR2Bench / app.py
UltraRonin's picture
add
abe371d
raw
history blame
9.06 kB
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
TASK_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import pdb
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
# try:
# print(EVAL_REQUESTS_PATH)
# snapshot_download(
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
# )
# except Exception:
# restart_space()
# try:
# print(EVAL_RESULTS_PATH)
# snapshot_download(
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
# )
# except Exception:
# restart_space()
task = ['Overall', 'Acrostic', 'Crossword', 'Cryptogram', 'Logic_Puzzle', 'Sudoku', 'Drop_Quote']
leaderboard_dict = {}
for t in task:
leaderboard_dict[t] = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS, task=t)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# pdb.set_trace()
def highlight_max_bold(s):
return ['font-weight: bold' if v == s.max() and v != s.min() else '' for v in s]
num_cols = dataframe.select_dtypes(include=['float']).columns
styler = dataframe.style.format({col: "{:.1f}" for col in num_cols})
styler = styler.apply(highlight_max_bold, subset=num_cols)
return gr.components.Dataframe(
value=styler,
headers=[c.name for c in fields(AutoEvalColumn)],
datatype=[c.type for c in fields(AutoEvalColumn)],
row_count=10,
interactive=False,
column_widths=[180, 60, 80, 80, 80, 80, 60],
)
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn)],
# select_columns=SelectColumns(
# default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
# cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
# label="Select Columns to Display:",
# ),
# # search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
# # hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
# # filter_columns=[
# # ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
# # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
# # ColumnFilter(
# # AutoEvalColumn.params.name,
# # type="slider",
# # min=0.01,
# # max=150,
# # label="Select the number of parameters (B)",
# # ),
# # ColumnFilter(
# # AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
# # ),
# # ],
# # bool_checkboxgroup_label="Hide models",
# interactive=False,
# )
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_id="main-tabs", elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
# leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.Tabs():
for i, t in enumerate(task):
with gr.TabItem(t.replace("_", " "), elem_id=f"llm-benchmark-tab-table-{t}", id=i):
if TASK_TEXT.get(t, None):
gr.Markdown(TASK_TEXT[t], elem_classes="markdown-text")
leaderboard = init_leaderboard(leaderboard_dict[t])
# with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
# gr.Markdown()
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()