Spaces:
Running
Running
Uddipan Basu Bir
commited on
Commit
Β·
a01cae7
1
Parent(s):
0d4b0fc
Download checkpoint from HF hub in OcrReorderPipeline
Browse files
app.py
CHANGED
@@ -16,89 +16,43 @@ from transformers import (
|
|
16 |
# ββ 1) MODEL SETUP βββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
17 |
repo = "Uddipan107/ocr-layoutlmv3-base-t5-small"
|
18 |
|
19 |
-
# Processor
|
20 |
processor = AutoProcessor.from_pretrained(
|
21 |
repo,
|
22 |
subfolder="preprocessor",
|
23 |
apply_ocr=False
|
24 |
)
|
25 |
|
26 |
-
#
|
27 |
-
layout_model = LayoutLMv3Model.from_pretrained(repo)
|
28 |
-
|
29 |
-
|
30 |
-
# T5 decoder & tokenizer
|
31 |
-
t5_model = T5ForConditionalGeneration.from_pretrained(repo)
|
32 |
-
t5_model.eval()
|
33 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
34 |
repo, subfolder="preprocessor"
|
35 |
)
|
36 |
|
37 |
-
# Ensure decoder_start_token_id
|
38 |
if t5_model.config.decoder_start_token_id is None:
|
39 |
-
|
40 |
-
t5_model.config.decoder_start_token_id =
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
torch.nn.GELU()
|
50 |
-
)
|
51 |
-
projection.load_state_dict(proj_state)
|
52 |
-
projection.eval()
|
53 |
-
|
54 |
-
# Move models to CPU (Spaces are CPU-only)
|
55 |
-
device = torch.device("cpu")
|
56 |
-
layout_model.to(device)
|
57 |
-
t5_model.to(device)
|
58 |
-
projection.to(device)
|
59 |
-
repo = "Uddipan107/ocr-layoutlmv3-base-t5-small"
|
60 |
-
|
61 |
-
# Processor for LayoutLMv3
|
62 |
-
processor = AutoProcessor.from_pretrained(
|
63 |
-
repo,
|
64 |
-
subfolder="preprocessor",
|
65 |
-
apply_ocr=False
|
66 |
-
)
|
67 |
-
|
68 |
-
# LayoutLMv3 encoder
|
69 |
-
layout_model = LayoutLMv3Model.from_pretrained(repo)
|
70 |
-
layout_model.eval()
|
71 |
-
|
72 |
-
# T5 decoder & tokenizer
|
73 |
-
t5_model = T5ForConditionalGeneration.from_pretrained(repo)
|
74 |
-
t5_model.eval()
|
75 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
76 |
-
repo, subfolder="preprocessor"
|
77 |
-
)
|
78 |
-
|
79 |
-
# Projection head: load from checkpoint
|
80 |
-
ckpt_file = hf_hub_download(repo_id=repo, filename="pytorch_model.bin")
|
81 |
-
ckpt = torch.load(ckpt_file, map_location="cpu")
|
82 |
-
proj_state= ckpt["projection"]
|
83 |
-
projection = torch.nn.Sequential(
|
84 |
torch.nn.Linear(768, t5_model.config.d_model),
|
85 |
torch.nn.LayerNorm(t5_model.config.d_model),
|
86 |
torch.nn.GELU()
|
87 |
-
)
|
88 |
projection.load_state_dict(proj_state)
|
89 |
-
projection.eval()
|
90 |
-
|
91 |
-
# Move models to CPU (Spaces are CPU-only)
|
92 |
-
device = torch.device("cpu")
|
93 |
-
layout_model.to(device)
|
94 |
-
t5_model.to(device)
|
95 |
-
projection.to(device)
|
96 |
|
97 |
# ββ 2) INFERENCE FUNCTION βββββββββββββββββββββββββββββββββββββββββββββ
|
98 |
def infer(image_path, json_file):
|
99 |
img_name = os.path.basename(image_path)
|
100 |
|
101 |
-
#
|
102 |
data = []
|
103 |
with open(json_file.name, "r", encoding="utf-8") as f:
|
104 |
for line in f:
|
@@ -106,7 +60,6 @@ def infer(image_path, json_file):
|
|
106 |
continue
|
107 |
data.append(json.loads(line))
|
108 |
|
109 |
-
# 2.b) Find entry matching uploaded image
|
110 |
entry = next((e for e in data if e.get("img_name") == img_name), None)
|
111 |
if entry is None:
|
112 |
return f"β No JSON entry found for image '{img_name}'"
|
@@ -114,21 +67,21 @@ def infer(image_path, json_file):
|
|
114 |
words = entry.get("src_word_list", [])
|
115 |
boxes = entry.get("src_wordbox_list", [])
|
116 |
|
117 |
-
#
|
118 |
img = Image.open(image_path).convert("RGB")
|
119 |
encoding = processor(
|
120 |
[img], [words], boxes=[boxes],
|
121 |
return_tensors="pt", padding=True, truncation=True
|
122 |
)
|
123 |
-
pixel_values = encoding.pixel_values.to(
|
124 |
-
input_ids = encoding.input_ids.to(
|
125 |
-
attention_mask = encoding.attention_mask.to(
|
126 |
-
bbox = encoding.bbox.to(
|
127 |
|
128 |
-
#
|
129 |
with torch.no_grad():
|
130 |
# LayoutLMv3 encoding
|
131 |
-
lm_out
|
132 |
pixel_values=pixel_values,
|
133 |
input_ids=input_ids,
|
134 |
attention_mask=attention_mask,
|
@@ -137,22 +90,23 @@ def infer(image_path, json_file):
|
|
137 |
seq_len = input_ids.size(1)
|
138 |
text_feats = lm_out.last_hidden_state[:, :seq_len, :]
|
139 |
|
140 |
-
# Projection
|
141 |
proj_feats = projection(text_feats)
|
142 |
-
gen_ids
|
143 |
inputs_embeds=proj_feats,
|
144 |
attention_mask=attention_mask,
|
145 |
max_length=512,
|
146 |
-
decoder_start_token_id=t5_model.config.decoder_start_token_id
|
|
|
147 |
)
|
148 |
|
149 |
-
# Decode
|
150 |
result = tokenizer.batch_decode(
|
151 |
gen_ids, skip_special_tokens=True
|
152 |
)[0]
|
153 |
return result
|
154 |
|
155 |
-
# ββ 3) GRADIO
|
156 |
demo = gr.Interface(
|
157 |
fn=infer,
|
158 |
inputs=[
|
|
|
16 |
# ββ 1) MODEL SETUP βββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
17 |
repo = "Uddipan107/ocr-layoutlmv3-base-t5-small"
|
18 |
|
19 |
+
# Processor
|
20 |
processor = AutoProcessor.from_pretrained(
|
21 |
repo,
|
22 |
subfolder="preprocessor",
|
23 |
apply_ocr=False
|
24 |
)
|
25 |
|
26 |
+
# Encoder & Decoder
|
27 |
+
layout_model = LayoutLMv3Model.from_pretrained(repo).to("cpu").eval()
|
28 |
+
t5_model = T5ForConditionalGeneration.from_pretrained(repo).to("cpu").eval()
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
30 |
repo, subfolder="preprocessor"
|
31 |
)
|
32 |
|
33 |
+
# Ensure decoder_start_token_id and bos_token_id are set
|
34 |
if t5_model.config.decoder_start_token_id is None:
|
35 |
+
fallback = tokenizer.bos_token_id or tokenizer.eos_token_id
|
36 |
+
t5_model.config.decoder_start_token_id = fallback
|
37 |
+
if t5_model.config.bos_token_id is None:
|
38 |
+
t5_model.config.bos_token_id = t5_model.config.decoder_start_token_id
|
39 |
+
|
40 |
+
# Projection head
|
41 |
+
ckpt_file = hf_hub_download(repo_id=repo, filename="pytorch_model.bin")
|
42 |
+
ckpt = torch.load(ckpt_file, map_location="cpu")
|
43 |
+
proj_state = ckpt["projection"]
|
44 |
+
projection = torch.nn.Sequential(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
torch.nn.Linear(768, t5_model.config.d_model),
|
46 |
torch.nn.LayerNorm(t5_model.config.d_model),
|
47 |
torch.nn.GELU()
|
48 |
+
).to("cpu")
|
49 |
projection.load_state_dict(proj_state)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# ββ 2) INFERENCE FUNCTION βββββββββββββββββββββββββββββββββββββββββββββ
|
52 |
def infer(image_path, json_file):
|
53 |
img_name = os.path.basename(image_path)
|
54 |
|
55 |
+
# Load NDJSON
|
56 |
data = []
|
57 |
with open(json_file.name, "r", encoding="utf-8") as f:
|
58 |
for line in f:
|
|
|
60 |
continue
|
61 |
data.append(json.loads(line))
|
62 |
|
|
|
63 |
entry = next((e for e in data if e.get("img_name") == img_name), None)
|
64 |
if entry is None:
|
65 |
return f"β No JSON entry found for image '{img_name}'"
|
|
|
67 |
words = entry.get("src_word_list", [])
|
68 |
boxes = entry.get("src_wordbox_list", [])
|
69 |
|
70 |
+
# Preprocess image + tokens
|
71 |
img = Image.open(image_path).convert("RGB")
|
72 |
encoding = processor(
|
73 |
[img], [words], boxes=[boxes],
|
74 |
return_tensors="pt", padding=True, truncation=True
|
75 |
)
|
76 |
+
pixel_values = encoding.pixel_values.to("cpu")
|
77 |
+
input_ids = encoding.input_ids.to("cpu")
|
78 |
+
attention_mask = encoding.attention_mask.to("cpu")
|
79 |
+
bbox = encoding.bbox.to("cpu")
|
80 |
|
81 |
+
# Forward pass
|
82 |
with torch.no_grad():
|
83 |
# LayoutLMv3 encoding
|
84 |
+
lm_out = layout_model(
|
85 |
pixel_values=pixel_values,
|
86 |
input_ids=input_ids,
|
87 |
attention_mask=attention_mask,
|
|
|
90 |
seq_len = input_ids.size(1)
|
91 |
text_feats = lm_out.last_hidden_state[:, :seq_len, :]
|
92 |
|
93 |
+
# Projection + T5 decoding
|
94 |
proj_feats = projection(text_feats)
|
95 |
+
gen_ids = t5_model.generate(
|
96 |
inputs_embeds=proj_feats,
|
97 |
attention_mask=attention_mask,
|
98 |
max_length=512,
|
99 |
+
decoder_start_token_id=t5_model.config.decoder_start_token_id,
|
100 |
+
bos_token_id=t5_model.config.bos_token_id
|
101 |
)
|
102 |
|
103 |
+
# Decode and return
|
104 |
result = tokenizer.batch_decode(
|
105 |
gen_ids, skip_special_tokens=True
|
106 |
)[0]
|
107 |
return result
|
108 |
|
109 |
+
# ββ 3) GRADIO INTERFACE ββββββββββββββββββββββββββββββββββββββββββββββββ
|
110 |
demo = gr.Interface(
|
111 |
fn=infer,
|
112 |
inputs=[
|