Spaces:
Running
Running
Uddipan Basu Bir
commited on
Commit
Β·
a0040a5
1
Parent(s):
b701d44
Download checkpoint from HF hub in OcrReorderPipeline
Browse files
app.py
CHANGED
@@ -8,21 +8,17 @@ import gradio as gr
|
|
8 |
from inference import OcrReorderPipeline
|
9 |
from transformers import AutoProcessor, LayoutLMv3Model, AutoTokenizer
|
10 |
|
11 |
-
#
|
12 |
repo = "Uddipan107/ocr-layoutlmv3-base-t5-small"
|
13 |
model = LayoutLMv3Model.from_pretrained(repo)
|
14 |
tokenizer = AutoTokenizer.from_pretrained(repo, subfolder="preprocessor")
|
15 |
processor = AutoProcessor.from_pretrained(repo, subfolder="preprocessor", apply_ocr=False)
|
|
|
16 |
|
17 |
-
# instantiate your custom pipeline
|
18 |
-
pipe = OcrReorderPipeline(model, tokenizer, processor, device=0)
|
19 |
-
|
20 |
-
# ββ 2) Inference function βββββββββββββββββββββββββββββββββββββββββββββββββ
|
21 |
def infer(image_path, json_file):
|
22 |
-
# Extract filename
|
23 |
img_name = os.path.basename(image_path)
|
24 |
|
25 |
-
# Parse NDJSON
|
26 |
data = []
|
27 |
with open(json_file.name, "r", encoding="utf-8") as f:
|
28 |
for line in f:
|
@@ -31,7 +27,6 @@ def infer(image_path, json_file):
|
|
31 |
continue
|
32 |
data.append(json.loads(line))
|
33 |
|
34 |
-
# Find the matching entry
|
35 |
entry = next((e for e in data if e["img_name"] == img_name), None)
|
36 |
if entry is None:
|
37 |
return f"β No JSON entry found for image '{img_name}'"
|
@@ -39,17 +34,15 @@ def infer(image_path, json_file):
|
|
39 |
words = entry["src_word_list"]
|
40 |
boxes = entry["src_wordbox_list"]
|
41 |
|
42 |
-
#
|
43 |
img = Image.open(image_path).convert("RGB")
|
44 |
-
buf = BytesIO()
|
45 |
-
img.save(buf, format="PNG")
|
46 |
b64 = base64.b64encode(buf.getvalue()).decode()
|
47 |
|
48 |
-
#
|
49 |
-
reordered = pipe(
|
50 |
return reordered
|
51 |
|
52 |
-
# ββ 3) Build the Gradio interface βββββββββββββββββββββββββββββββββββββββββββ
|
53 |
demo = gr.Interface(
|
54 |
fn=infer,
|
55 |
inputs=[
|
@@ -61,4 +54,5 @@ demo = gr.Interface(
|
|
61 |
)
|
62 |
|
63 |
if __name__ == "__main__":
|
|
|
64 |
demo.launch()
|
|
|
8 |
from inference import OcrReorderPipeline
|
9 |
from transformers import AutoProcessor, LayoutLMv3Model, AutoTokenizer
|
10 |
|
11 |
+
# 1) Load model/tokenizer/processor
|
12 |
repo = "Uddipan107/ocr-layoutlmv3-base-t5-small"
|
13 |
model = LayoutLMv3Model.from_pretrained(repo)
|
14 |
tokenizer = AutoTokenizer.from_pretrained(repo, subfolder="preprocessor")
|
15 |
processor = AutoProcessor.from_pretrained(repo, subfolder="preprocessor", apply_ocr=False)
|
16 |
+
pipe = OcrReorderPipeline(model, tokenizer, processor, device=0)
|
17 |
|
|
|
|
|
|
|
|
|
18 |
def infer(image_path, json_file):
|
|
|
19 |
img_name = os.path.basename(image_path)
|
20 |
|
21 |
+
# Parse NDJSON
|
22 |
data = []
|
23 |
with open(json_file.name, "r", encoding="utf-8") as f:
|
24 |
for line in f:
|
|
|
27 |
continue
|
28 |
data.append(json.loads(line))
|
29 |
|
|
|
30 |
entry = next((e for e in data if e["img_name"] == img_name), None)
|
31 |
if entry is None:
|
32 |
return f"β No JSON entry found for image '{img_name}'"
|
|
|
34 |
words = entry["src_word_list"]
|
35 |
boxes = entry["src_wordbox_list"]
|
36 |
|
37 |
+
# Read & encode image
|
38 |
img = Image.open(image_path).convert("RGB")
|
39 |
+
buf = BytesIO(); img.save(buf, format="PNG")
|
|
|
40 |
b64 = base64.b64encode(buf.getvalue()).decode()
|
41 |
|
42 |
+
# β οΈ Pass as `inputs`
|
43 |
+
reordered = pipe(inputs=b64, words=words, boxes=boxes)[0]
|
44 |
return reordered
|
45 |
|
|
|
46 |
demo = gr.Interface(
|
47 |
fn=infer,
|
48 |
inputs=[
|
|
|
54 |
)
|
55 |
|
56 |
if __name__ == "__main__":
|
57 |
+
# set share=True if you want a public link
|
58 |
demo.launch()
|