Spaces:
Running
Running
import json, base64 | |
from io import BytesIO | |
from PIL import Image | |
import gradio as gr | |
from inference import OcrReorderPipeline | |
from transformers import ( | |
AutoProcessor, | |
LayoutLMv3Model, | |
AutoTokenizer | |
) | |
import torch | |
# 1) Load from your model repo, pointing at the `preprocessor/` folder | |
repo = "Uddipan107/ocr-layoutlmv3-base-t5-small" | |
model = LayoutLMv3Model.from_pretrained(repo) | |
tokenizer = AutoTokenizer.from_pretrained(repo, subfolder="preprocessor") | |
processor = AutoProcessor.from_pretrained(repo, subfolder="preprocessor", apply_ocr=False) | |
# 2) Instantiate your pipeline | |
pipe = OcrReorderPipeline(model, tokenizer, processor, device=0) | |
def infer(image, words_json, boxes_json): | |
words = json.loads(words_json) | |
boxes = json.loads(boxes_json) | |
# Encode PIL image β PNG β base64 | |
buf = BytesIO() | |
image.save(buf, format="PNG") | |
b64 = base64.b64encode(buf.getvalue()).decode() | |
# Run your custom pipeline and return the first (only) output string | |
return pipe(b64, words, boxes)[0] | |
# 3) Gradio UI | |
demo = gr.Interface( | |
fn=infer, | |
inputs=[ | |
gr.Image(type="pil", label="Image"), | |
gr.Textbox(label="Words (JSON list)"), | |
gr.Textbox(label="Boxes (JSON list)") | |
], | |
outputs="text", | |
title="OCR Reorder Pipeline" | |
) | |
if __name__ == "__main__": | |
demo.launch() | |