File size: 1,488 Bytes
ac0dee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import datasets
from langchain.docstore.document import Document
from smolagents import Tool
from langchain_community.retrievers import BM25Retriever

# Load the dataset
guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train")

# Convert dataset entries into Document objects
docs = [
    Document(
        page_content="\n".join([
            f"Name: {guest['name']}",
            f"Relation: {guest['relation']}",
            f"Description: {guest['description']}",
            f"Email: {guest['email']}"
        ]),
        metadata={"name": guest["name"]}
    )
    for guest in guest_dataset
]

# Define the retriever tool
class GuestInfoRetrieverTool(Tool):
    name = "guest_info_retriever"
    description = "Retrieves detailed information about gala guests based on their name or relation."
    inputs = {
        "query": {
            "type": "string",
            "description": "The name or relation of the guest you want information about."
        }
    }
    output_type = "string"

    def __init__(self, docs):
        self.is_initialized = False
        self.retriever = BM25Retriever.from_documents(docs)

    def forward(self, query: str):
        results = self.retriever.get_relevant_documents(query)
        if results:
            return "\n\n".join([doc.page_content for doc in results[:3]])
        else:
            return "No matching guest information found."

# Initialize the tool
guest_info_tool = GuestInfoRetrieverTool(docs)