import os import gradio as gr import requests import pandas as pd from agent import create_agent, fetch_random_question # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" def run_and_submit_all(profile: gr.OAuthProfile | None): """ Fetch all questions, run the SmolAgent on them, submit all answers, and display the results. """ space_id = os.getenv("SPACE_ID") if profile: username = profile.username print(f"User logged in: {username}") else: print("User not logged in.") return "Please login to Hugging Face with the button.", None questions_url = f"{DEFAULT_API_URL}/questions" submit_url = f"{DEFAULT_API_URL}/submit" try: agent = create_agent() print("SmolAgent initialized.") except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(f"Agent code URL: {agent_code}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions = response.json() if not questions: return "No questions fetched.", None print(f"Fetched {len(questions)} questions.") except Exception as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None results = [] payload = [] for q in questions: tid = q.get("task_id") text = q.get("question") if not tid or not text: continue try: ans = agent.run(question=text) except Exception as e: ans = f"ERROR: {e}" payload.append({"task_id": tid, "submitted_answer": ans}) results.append({"Task ID": tid, "Question": text, "Answer": ans}) if not payload: return "Agent returned no answers.", pd.DataFrame(results) submission = {"username": username, "agent_code": agent_code, "answers": payload} try: resp = requests.post(submit_url, json=submission, timeout=60) resp.raise_for_status() data = resp.json() status = ( f"Submission Successful!\n" f"User: {data.get('username')}\n" f"Score: {data.get('score')}% ({data.get('correct_count')}/{data.get('total_attempted')})\n" f"Message: {data.get('message')}" ) except Exception as e: print(f"Submission error: {e}") status = f"Submission Failed: {e}" return status, pd.DataFrame(results) def test_random_question(profile: gr.OAuthProfile | None): """ Fetch a random GAIA question and return the agent's answer. """ if not profile: return "Please login to test.", "" try: q = fetch_random_question() agent = create_agent() ans = agent.run(question=q.get("question", "")) return q.get("question", ""), ans except Exception as e: print(f"Test error: {e}") return f"Error: {e}", "" # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# SmolAgent Evaluation Runner") gr.Markdown( """ **Istruzioni:** 1. Clone questo space e definisci la logica in agent.py. 2. Effettua il login con il tuo account Hugging Face. 3. Usa 'Run Evaluation & Submit All Answers' o 'Test Random Question'. """ ) login = gr.LoginButton() run_all = gr.Button("Run Evaluation & Submit All Answers") test = gr.Button("Test Random Question") status = gr.Textbox(label="Status / Risultato", lines=5, interactive=False) table = gr.DataFrame(label="Risultati Completi", wrap=True) qbox = gr.Textbox(label="Domanda Casuale", lines=3, interactive=False) abox = gr.Textbox(label="Risposta Agente", lines=3, interactive=False) run_all.click(fn=run_and_submit_all, inputs=[login], outputs=[status, table]) test.click(fn=test_random_question, inputs=[login], outputs=[qbox, abox]) if __name__ == "__main__": demo.launch(debug=True, share=False)