import os import gradio as gr import requests import pandas as pd from agent import create_agent, fetch_random_question # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" def run_and_submit_all(profile): """ Fetch all questions, run the SmolAgent on them, submit all answers, and display the results. """ space_id = os.getenv("SPACE_ID") if profile is None: return "Please login to Hugging Face with the button.", None username = profile.username # Instantiate the agent try: agent = create_agent() except Exception as e: return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" # Fetch questions try: response = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15) response.raise_for_status() questions = response.json() except Exception as e: return f"Error fetching questions: {e}", None if not questions: return "No questions fetched.", None # Run agent on each question results = [] payload = [] for q in questions: task_id = q.get("task_id") question_text = q.get("question") if not task_id or not question_text: continue try: answer = agent.run(question=question_text) except Exception as e: answer = f"ERROR: {e}" results.append({"Task ID": task_id, "Question": question_text, "Answer": answer}) payload.append({"task_id": task_id, "submitted_answer": answer}) # Submit answers submit_payload = {"username": username, "agent_code": agent_code, "answers": payload} try: resp = requests.post(f"{DEFAULT_API_URL}/submit", json=submit_payload, timeout=60) resp.raise_for_status() data = resp.json() status = ( f"Submission Successful!\n" f"User: {data.get('username')}\n" f"Score: {data.get('score')}% ({data.get('correct_count')}/{data.get('total_attempted')})\n" f"Message: {data.get('message')}" ) except Exception as e: status = f"Submission Failed: {e}" return status, pd.DataFrame(results) def test_random_question(profile): """ Fetch a random GAIA question and return its answer by the agent. """ if profile is None: return "Please login to test.", "" try: q = fetch_random_question() agent = create_agent() ans = agent.run(question=q.get("question", "")) return q.get("question", ""), ans except Exception as e: return f"Error: {e}", "" # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# SmolAgent Evaluation Runner") gr.Markdown( """ **Istruzioni:** 1. Clone questo space e definisci la logica in agent.py. 2. Effettua il login con il tuo account Hugging Face. 3. Usa 'Run Evaluation & Submit All Answers' o 'Test Random Question'. """ ) # OAuth login and user state login = gr.LoginButton() user = gr.State() # On login, store profile in state login.click(fn=lambda profile: profile, inputs=[login], outputs=[user]) run_all = gr.Button("Run Evaluation & Submit All Answers") test = gr.Button("Test Random Question") status = gr.Textbox(label="Status / Risultato", lines=5, interactive=False) table = gr.DataFrame(label="Risultati Completi", wrap=True) qbox = gr.Textbox(label="Domanda Casuale", lines=3, interactive=False) abox = gr.Textbox(label="Risposta Agente", lines=3, interactive=False) # Use stored user state as input run_all.click(fn=run_and_submit_all, inputs=[user], outputs=[status, table]) test.click(fn=test_random_question, inputs=[user], outputs=[qbox, abox]) if __name__ == "__main__": demo.launch(debug=True, share=False) demo.launch(debug=True, share=False)