Ubik80's picture
Update app.py
de8170e verified
raw
history blame
4.63 kB
import os
import gradio as gr
import requests
import pandas as pd
from tools import FinalAnswerTool
from smolagents import CodeAgent, OpenAIServerModel
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class BasicAgent:
def __init__(self):
# Use GPT-3.5-turbo for quota-friendly operation
model = OpenAIServerModel(model_id="gpt-3.5-turbo")
final_tool = FinalAnswerTool()
self.agent = CodeAgent(
model=model,
tools=[final_tool],
max_steps=3,
verbosity_level=1
)
def __call__(self, question: str) -> str:
return self.agent.run(question)
def extract_username(profile):
"""
Extract username from the Hugging Face OAuthProfile or dict.
"""
if not profile:
return None
# If profile is a dict (Gradio may return dict), extract keys
if isinstance(profile, dict):
return profile.get('username') or profile.get('name') or profile.get('login') or profile.get('id')
# Otherwise, assume object with attributes
return getattr(profile, 'username', None) or getattr(profile, 'name', None) or getattr(profile, 'login', None)
def run_and_submit_all(profile):
"""
Fetch all questions, run the BasicAgent, submit answers, and return status and DataFrame.
"""
username = extract_username(profile)
if not username:
return "Please login to Hugging Face with the login button.", None
# Fetch questions
try:
resp = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15)
resp.raise_for_status()
questions = resp.json()
except Exception as e:
return f"Error fetching questions: {e}", None
# Run agent on each question
agent = BasicAgent()
results = []
payload = []
for q in questions:
tid = q.get('task_id')
text = q.get('question')
if not tid or not text:
continue
try:
ans = agent(text)
except Exception as e:
ans = f"ERROR: {e}"
results.append({'Task ID': tid, 'Question': text, 'Answer': ans})
payload.append({'task_id': tid, 'submitted_answer': ans})
if not payload:
return "Agent returned no answers.", pd.DataFrame(results)
# Prepare and submit
submission = {
'username': username,
'agent_code': f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main",
'answers': payload
}
try:
sub_resp = requests.post(f"{DEFAULT_API_URL}/submit", json=submission, timeout=60)
sub_resp.raise_for_status()
data = sub_resp.json()
status = (
f"Submission Successful!\n"
f"User: {data.get('username')}\n"
f"Score: {data.get('score')}% ({data.get('correct_count')}/{data.get('total_attempted')})\n"
f"Message: {data.get('message')}"
)
except Exception as e:
status = f"Submission Failed: {e}"
return status, pd.DataFrame(results)
def test_random_question(profile):
"""
Fetch a random question and return question and agent answer.
"""
username = extract_username(profile)
if not username:
return "Please login to Hugging Face with the login button.", ""
try:
q = requests.get(f"{DEFAULT_API_URL}/random-question", timeout=15).json()
ans = BasicAgent()(q.get('question', ''))
return q.get('question', ''), ans
except Exception as e:
return f"Error during test: {e}", ""
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Clone this space and define your agent in `tools.py`.
2. Log in with your Hugging Face account.
3. Use **Run Evaluation & Submit All Answers** or **Test Random Question**.
"""
)
login = gr.LoginButton()
run_btn = gr.Button("Run Evaluation & Submit All Answers")
test_btn = gr.Button("Test Random Question")
status_out = gr.Textbox(label="Status / Result", lines=5, interactive=False)
table_out = gr.DataFrame(label="Full Results Table", wrap=True)
question_out = gr.Textbox(label="Random Question", lines=3, interactive=False)
answer_out = gr.Textbox(label="Agent Answer", lines=3, interactive=False)
run_btn.click(fn=run_and_submit_all, inputs=[login], outputs=[status_out, table_out])
test_btn.click(fn=test_random_question, inputs=[login], outputs=[question_out, answer_out])
if __name__ == "__main__":
demo.launch(debug=True, share=False)