Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from smolagents import CodeAgent, OpenAIServerModel | |
from tools import FinalAnswerTool | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
class BasicAgent: | |
def __init__(self): | |
model = OpenAIServerModel(model_id="gpt-4o") | |
final_tool = FinalAnswerTool() | |
self.agent = CodeAgent( | |
model=model, | |
tools=[final_tool], | |
# opzioni aggiuntive, se vuoi: | |
max_steps=3, | |
verbosity_level=1 | |
) | |
def __call__(self, question: str) -> str: | |
return self.agent.run(question) | |
def run_and_submit_all(profile): | |
space_id = os.getenv("SPACE_ID") | |
if not profile: | |
return "Please login to Hugging Face with the login button.", None | |
username = getattr(profile, "username", None) or getattr(profile, "name", None) | |
if not username: | |
return "Login error: username not found.", None | |
# 1) Fetch questions | |
try: | |
resp = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15) | |
resp.raise_for_status() | |
questions = resp.json() | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
# 2) Run agent | |
agent = BasicAgent() | |
results, payload = [], [] | |
for q in questions: | |
tid, text = q["task_id"], q["question"] | |
try: | |
ans = agent(text) | |
except Exception as e: | |
ans = f"ERROR: {e}" | |
results.append({"Task ID": tid, "Question": text, "Answer": ans}) | |
payload.append({"task_id": tid, "submitted_answer": ans}) | |
if not payload: | |
return "Agent returned no answers.", pd.DataFrame(results) | |
# 3) Submit | |
submission = { | |
"username": username, | |
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main", | |
"answers": payload | |
} | |
try: | |
sub_resp = requests.post(f"{DEFAULT_API_URL}/submit", json=submission, timeout=60) | |
sub_resp.raise_for_status() | |
data = sub_resp.json() | |
status = ( | |
f"Submission Successful!\n" | |
f"User: {data['username']}\n" | |
f"Score: {data['score']}% " | |
f"({data['correct_count']}/{data['total_attempted']})\n" | |
f"Message: {data['message']}" | |
) | |
except Exception as e: | |
status = f"Submission Failed: {e}" | |
return status, pd.DataFrame(results) | |
def test_random_question(profile): | |
if not profile: | |
return "Please login to Hugging Face with the login button.", "" | |
try: | |
q = requests.get(f"{DEFAULT_API_URL}/random-question", timeout=15).json() | |
ans = BasicAgent()(q["question"]) | |
return q["question"], ans | |
except Exception as e: | |
return f"Error during test: {e}", "" | |
# --- Gradio UI --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown(""" | |
**Instructions:** | |
1. Clone this space and define your agent in `tools.py`. | |
2. Log in with your HF account. | |
3. Use **Run Evaluation & Submit All Answers** or **Test Random Question**. | |
""") | |
login = gr.LoginButton() | |
run_btn = gr.Button("Run Evaluation & Submit All Answers") | |
test_btn = gr.Button("Test Random Question") | |
status_out = gr.Textbox(label="Status / Result", lines=5, interactive=False) | |
table_out = gr.DataFrame(label="Full Results Table", wrap=True) | |
question_out = gr.Textbox(label="Random Question", lines=3, interactive=False) | |
answer_out = gr.Textbox(label="Agent Answer", lines=3, interactive=False) | |
run_btn.click(run_and_submit_all, inputs=[login], outputs=[status_out, table_out]) | |
test_btn.click(test_random_question, inputs=[login], outputs=[question_out, answer_out]) | |
if __name__ == "__main__": | |
demo.launch(debug=True, share=False) | |