Ubik80's picture
Update app.py
b7a3c71 verified
raw
history blame
4.18 kB
import os
import gradio as gr
import requests
import pandas as pd
from tools import AnswerTool
from smolagents import CodeAgent, OpenAIServerModel
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class BasicAgent:
def __init__(self):
# Initialize CodeAgent with an OpenAI model and custom AnswerTool
model = OpenAIServerModel(model_id="gpt-3.5-turbo")
answer_tool = AnswerTool()
self.agent = CodeAgent(
model=model,
tools=[answer_tool],
add_base_tools=False,
max_steps=1,
verbosity_level=0
)
def __call__(self, question: str) -> str:
# Execute a single step to call the AnswerTool
return self.agent.run(question)
def run_and_submit_all(username):
# Username provided manually by the user
if not username:
return "Please enter your Hugging Face username.", None
# Fetch questions
try:
resp = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15)
if resp.status_code == 429:
return "Server rate limited the requests. Please wait a moment and try again.", None
resp.raise_for_status()
questions = resp.json()
except Exception as e:
return f"Error fetching questions: {e}", None
# Run agent on all questions
agent = BasicAgent()
results = []
payload = []
for q in questions:
tid = q.get('task_id')
text = q.get('question')
if not (tid and text):
continue
try:
ans = agent(text)
except Exception as e:
ans = f"ERROR: {e}"
results.append({'Task ID': tid, 'Question': text, 'Answer': ans})
payload.append({'task_id': tid, 'submitted_answer': ans})
if not payload:
return "Agent returned no answers.", pd.DataFrame(results)
# Submit answers
submission = {
'username': username,
'agent_code': f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main",
'answers': payload
}
try:
sub_resp = requests.post(f"{DEFAULT_API_URL}/submit", json=submission, timeout=60)
sub_resp.raise_for_status()
data = sub_resp.json()
status = (
f"Submission Successful!\n"
f"User: {data.get('username')}\n"
f"Score: {data.get('score')}% ({data.get('correct_count')}/{data.get('total_attempted')})\n"
f"Message: {data.get('message')}"
)
except Exception as e:
status = f"Submission Failed: {e}"
return status, pd.DataFrame(results)
def test_random_question(username):
if not username:
return "Please enter your Hugging Face username.", ""
try:
q = requests.get(f"{DEFAULT_API_URL}/random-question", timeout=15).json()
question = q.get('question', '')
ans = BasicAgent()(question)
return question, ans
except Exception as e:
return f"Error during test: {e}", ""
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Enter your Hugging Face username.
2. Use **Test Random Question** to check a single question.
3. Use **Run Evaluation & Submit All Answers** to evaluate on all questions.
"""
)
username_input = gr.Textbox(label="Hugging Face Username", placeholder="your-username")
run_btn = gr.Button("Run Evaluation & Submit All Answers")
test_btn = gr.Button("Test Random Question")
status_out = gr.Textbox(label="Status / Result", lines=5, interactive=False)
table_out = gr.DataFrame(label="Full Results Table", wrap=True)
question_out = gr.Textbox(label="Random Question", lines=3, interactive=False)
answer_out = gr.Textbox(label="Agent Answer", lines=3, interactive=False)
run_btn.click(fn=run_and_submit_all, inputs=[username_input], outputs=[status_out, table_out])
test_btn.click(fn=test_random_question, inputs=[username_input], outputs=[question_out, answer_out])
if __name__ == "__main__":
demo.launch(debug=True, share=False)