Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from tools import FinalAnswerTool | |
from smolagents import CodeAgent, OpenAIServerModel | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
class BasicAgent: | |
def __init__(self): | |
# Use GPT-4o; ensure your API key has access | |
model = OpenAIServerModel(model_id="gpt-4o") | |
final_tool = FinalAnswerTool() | |
self.agent = CodeAgent( | |
model=model, | |
tools=[final_tool], | |
max_steps=3, | |
verbosity_level=1 | |
) | |
def __call__(self, question: str) -> str: | |
return self.agent.run(question) | |
def run_and_submit_all(profile): | |
# Extract username | |
username = None | |
if profile: | |
if isinstance(profile, dict): | |
username = profile.get('username') or profile.get('name') or profile.get('login') or profile.get('id') | |
else: | |
username = getattr(profile, 'username', None) or getattr(profile, 'name', None) | |
if not username: | |
return "Please login to Hugging Face with the login button.", None | |
# Fetch questions | |
try: | |
resp = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15) | |
resp.raise_for_status() | |
questions = resp.json() | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
# Run agent | |
agent = BasicAgent() | |
results = [] | |
payload = [] | |
for q in questions: | |
tid = q.get('task_id') | |
text = q.get('question') | |
if not tid or not text: | |
continue | |
try: | |
ans = agent(text) | |
except Exception as e: | |
ans = f"ERROR: {e}" | |
results.append({'Task ID': tid, 'Question': text, 'Answer': ans}) | |
payload.append({'task_id': tid, 'submitted_answer': ans}) | |
if not payload: | |
return "Agent returned no answers.", pd.DataFrame(results) | |
# Submit | |
submission = { | |
'username': username, | |
'agent_code': f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main", | |
'answers': payload | |
} | |
try: | |
sub_resp = requests.post(f"{DEFAULT_API_URL}/submit", json=submission, timeout=60) | |
sub_resp.raise_for_status() | |
data = sub_resp.json() | |
status = ( | |
f"Submission Successful!\n" | |
f"User: {data.get('username')}\n" | |
f"Score: {data.get('score')}% ({data.get('correct_count')}/{data.get('total_attempted')})\n" | |
f"Message: {data.get('message')}" | |
) | |
except Exception as e: | |
status = f"Submission Failed: {e}" | |
return status, pd.DataFrame(results) | |
def test_random_question(profile): | |
username = None | |
if profile: | |
if isinstance(profile, dict): | |
username = profile.get('username') or profile.get('name') | |
else: | |
username = getattr(profile, 'username', None) or getattr(profile, 'name', None) | |
if not username: | |
return "Please login to Hugging Face with the login button.", "" | |
try: | |
q = requests.get(f"{DEFAULT_API_URL}/random-question", timeout=15).json() | |
ans = BasicAgent()(q.get('question', '')) | |
return q.get('question', ''), ans | |
except Exception as e: | |
return f"Error during test: {e}", "" | |
# --- Gradio UI --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Clone this space and define your agent in `tools.py`. | |
2. Log in with your Hugging Face account. | |
3. Use **Run Evaluation & Submit All Answers** or **Test Random Question**. | |
""" | |
) | |
login = gr.LoginButton() | |
run_btn = gr.Button("Run Evaluation & Submit All Answers") | |
test_btn = gr.Button("Test Random Question") | |
status_out = gr.Textbox(label="Status / Result", lines=5, interactive=False) | |
table_out = gr.DataFrame(label="Full Results Table", wrap=True) | |
question_out = gr.Textbox(label="Random Question", lines=3, interactive=False) | |
answer_out = gr.Textbox(label="Agent Answer", lines=3, interactive=False) | |
run_btn.click(fn=run_and_submit_all, inputs=[login], outputs=[status_out, table_out]) | |
test_btn.click(fn=test_random_question, inputs=[login], outputs=[question_out, answer_out]) | |
if __name__ == "__main__": | |
demo.launch(debug=True, share=False) | |