Ubik80's picture
Update app.py
21325a3 verified
raw
history blame
4.36 kB
import os
import gradio as gr
import requests
import pandas as pd
from tools import FinalAnswerTool
from smolagents import CodeAgent, OpenAIServerModel
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class BasicAgent:
def __init__(self):
# Use GPT-4o; ensure your API key has access
model = OpenAIServerModel(model_id="gpt-4o")
final_tool = FinalAnswerTool()
self.agent = CodeAgent(
model=model,
tools=[final_tool],
max_steps=3,
verbosity_level=1
)
def __call__(self, question: str) -> str:
return self.agent.run(question)
def run_and_submit_all(profile):
# Extract username
username = None
if profile:
if isinstance(profile, dict):
username = profile.get('username') or profile.get('name') or profile.get('login') or profile.get('id')
else:
username = getattr(profile, 'username', None) or getattr(profile, 'name', None)
if not username:
return "Please login to Hugging Face with the login button.", None
# Fetch questions
try:
resp = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15)
resp.raise_for_status()
questions = resp.json()
except Exception as e:
return f"Error fetching questions: {e}", None
# Run agent
agent = BasicAgent()
results = []
payload = []
for q in questions:
tid = q.get('task_id')
text = q.get('question')
if not tid or not text:
continue
try:
ans = agent(text)
except Exception as e:
ans = f"ERROR: {e}"
results.append({'Task ID': tid, 'Question': text, 'Answer': ans})
payload.append({'task_id': tid, 'submitted_answer': ans})
if not payload:
return "Agent returned no answers.", pd.DataFrame(results)
# Submit
submission = {
'username': username,
'agent_code': f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main",
'answers': payload
}
try:
sub_resp = requests.post(f"{DEFAULT_API_URL}/submit", json=submission, timeout=60)
sub_resp.raise_for_status()
data = sub_resp.json()
status = (
f"Submission Successful!\n"
f"User: {data.get('username')}\n"
f"Score: {data.get('score')}% ({data.get('correct_count')}/{data.get('total_attempted')})\n"
f"Message: {data.get('message')}"
)
except Exception as e:
status = f"Submission Failed: {e}"
return status, pd.DataFrame(results)
def test_random_question(profile):
username = None
if profile:
if isinstance(profile, dict):
username = profile.get('username') or profile.get('name')
else:
username = getattr(profile, 'username', None) or getattr(profile, 'name', None)
if not username:
return "Please login to Hugging Face with the login button.", ""
try:
q = requests.get(f"{DEFAULT_API_URL}/random-question", timeout=15).json()
ans = BasicAgent()(q.get('question', ''))
return q.get('question', ''), ans
except Exception as e:
return f"Error during test: {e}", ""
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Clone this space and define your agent in `tools.py`.
2. Log in with your Hugging Face account.
3. Use **Run Evaluation & Submit All Answers** or **Test Random Question**.
"""
)
login = gr.LoginButton()
run_btn = gr.Button("Run Evaluation & Submit All Answers")
test_btn = gr.Button("Test Random Question")
status_out = gr.Textbox(label="Status / Result", lines=5, interactive=False)
table_out = gr.DataFrame(label="Full Results Table", wrap=True)
question_out = gr.Textbox(label="Random Question", lines=3, interactive=False)
answer_out = gr.Textbox(label="Agent Answer", lines=3, interactive=False)
run_btn.click(fn=run_and_submit_all, inputs=[login], outputs=[status_out, table_out])
test_btn.click(fn=test_random_question, inputs=[login], outputs=[question_out, answer_out])
if __name__ == "__main__":
demo.launch(debug=True, share=False)