File size: 2,335 Bytes
10e9b7d
eccf8e4
0e6388c
 
 
 
 
 
 
 
 
 
 
 
60f0482
0e6388c
bee5328
0e6388c
 
 
 
 
 
bee5328
 
0e6388c
 
 
 
bee5328
0e6388c
 
 
 
 
 
bee5328
41085c3
0e6388c
 
 
 
bee5328
0e6388c
 
 
 
bee5328
0e6388c
 
 
 
 
 
 
 
 
 
 
bee5328
 
0e6388c
60f0482
0e6388c
 
41085c3
0e6388c
 
 
 
 
 
 
 
 
 
 
 
 
60f0482
0e6388c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import requests
from smolagents import CodeAgent, tool, OpenAIServerModel

# ------------------------
# Constants
# ------------------------
API_URL = "https://agents-course-unit4-scoring.hf.space"

# ------------------------
# Tool definitions
# ------------------------
@tool
def fetch_questions() -> list:
    """
    Fetch the full list of GAIA evaluation questions.

    Returns:
        list: A list of question dicts, each with 'task_id' and 'question'.
    """
    resp = requests.get(f"{API_URL}/questions", timeout=15)
    resp.raise_for_status()
    return resp.json()


@tool
def fetch_random_question() -> dict:
    """
    Fetch a single random GAIA question.

    Returns:
        dict: A dict with keys 'task_id' and 'question'.
    """
    resp = requests.get(f"{API_URL}/random-question", timeout=15)
    resp.raise_for_status()
    return resp.json()


@tool
def submit_answers(username: str, agent_code: str, answers: list) -> dict:
    """
    Submit the agent's answers to GAIA and get the scoring.

    Args:
        username (str): The Hugging Face username identifying the submission.
        agent_code (str): URL to your Space code repository for verification.
        answers (list): A list of dicts, each with 'task_id' and 'submitted_answer'.

    Returns:
        dict: A dict containing 'score', 'correct_count', 'total_attempted', 'message', etc.
    """
    payload = {
        "username": username,
        "agent_code": agent_code,
        "answers": answers
    }
    resp = requests.post(f"{API_URL}/submit", json=payload, timeout=60)
    resp.raise_for_status()
    return resp.json()


def create_agent() -> CodeAgent:
    """
    Build and return a configured CodeAgent using OpenAI GPT-3.5 Turbo.
    Requires OPENAI_API_KEY in the environment.

    Returns:
        CodeAgent: An instance of CodeAgent configured with the GAIA tools.
    """
    # Use 'model_id' to match the OpenAIServerModel signature
    model = OpenAIServerModel(model_id="gpt-3.5-turbo")
    agent = CodeAgent(
        tools=[fetch_questions, fetch_random_question, submit_answers],
        model=model,
        prompt_template=(
            "Here is a GAIA question:\n"
            "{question}\n"
            "Provide ONLY the exact answer (exact-match), with no extra text."
        )
    )
    return agent