File size: 3,506 Bytes
8f627dd
 
 
 
 
 
 
 
 
4bad5a8
8f627dd
 
 
 
a1d84e4
f94e3fc
 
 
a1d84e4
 
 
 
 
 
8f627dd
83e82c8
 
 
 
 
 
 
 
 
8f627dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1d84e4
7765e5a
a1d84e4
 
 
8f627dd
 
 
a1d84e4
 
 
 
 
 
 
83e82c8
a1d84e4
 
 
90a5355
a1d84e4
 
 
 
 
 
90a5355
a1d84e4
 
 
 
 
90a5355
 
a1d84e4
 
8e6700d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import pickle
import pandas as pd
import shap
from shap.plots._force_matplotlib import draw_additive_plot
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt

# load the model from disk
loaded_model = pickle.load(open("filtered_xgb_model.pkl", 'rb'))

# Setup SHAP
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.

example_options = {
    "๐ŸŸข Well Engaged": [4.9, 5, 5, 4.9, 5, 5],
    "๐ŸŸก Marginal": [5, 4.6, 5, 5, 5, 4.7],
    "๐Ÿ”ด At Risk": [4.5, 4.7, 4.8, 4.5, 4.7, 4.5]
}

# Function to apply the example values
def fill_example(example_label):
    return example_options[example_label]

# Create the main function for server
def main_func(GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1):
    new_row = pd.DataFrame.from_dict({
        'GM3': GM3,
        'WorkEnv3': WorkEnv3,
        'WellBeing2': WellBeing2,
        'GM2': GM2,
        'JobSecurity': JobSecurity,
        'WellBeing1': WellBeing1
    }, orient='index').transpose()
    
    prob = loaded_model.predict_proba(new_row)
    
    shap_values = explainer(new_row)
    # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False)
    # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False)
    plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False)

    plt.tight_layout()
    local_plot = plt.gcf()
    plt.rcParams['figure.figsize'] = 6,4
    plt.close()
    
    return {"Leave": float(prob[0][0]), "Stay": 1-float(prob[0][0])}, local_plot

with gr.Blocks(title="๐ŸŒŸ Intent to Stay Prediction") as demo:
    gr.Image("https://1000logos.net/wp-content/uploads/2017/02/Font-Hilton-Logo.jpg", elem_id="banner")
    gr.Markdown("# ๐ŸŒŸ Employee Retention Predictor")
    gr.Markdown("Predict if an employee will **Stay** or **Leave** based on key workplace factors.")
    gr.Markdown("---")

    with gr.Row():        
        with gr.Column():
            GM3 = gr.Slider(label="๐Ÿ‘จโ€๐Ÿ’ผ My General Manager is an effective leader", minimum=1, maximum=5, value=4, step=0.1)
            WorkEnv3 = gr.Slider(label="๐Ÿข My Work Environment is comfortable and welcoming", minimum=1, maximum=5, value=4, step=0.1)
            WellBeing2 = gr.Slider(label="๐Ÿ’– I feel balanced and healthy", minimum=1, maximum=5, value=4, step=0.1)
            GM2 = gr.Slider(label="๐Ÿ“Š My General Manager uses feedback from Team Members", minimum=1, maximum=5, value=4, step=0.1)
            JobSecurity = gr.Slider(label="๐Ÿ” Job Security", minimum=1, maximum=5, value=4, step=0.1)
            WellBeing1 = gr.Slider(label="๐Ÿง  My mental health is good", minimum=1, maximum=5, value=4, step=0.1)
            submit_btn = gr.Button("๐Ÿš€ Analyze Now", variant="primary")

        with gr.Column():
            label = gr.Label(label="๐Ÿ”ฎ Prediction Result")
            local_plot = gr.Plot(label="SHAP Analysis")

    # Dropdown for labeled examples
    gr.Markdown("### ๐Ÿท๏ธ Select an Example:")
    example_dropdown = gr.Dropdown(
        label="Choose a scenario",
        choices=list(example_options.keys())
    )

    # Apply example values when selected
    example_dropdown.change(
        fill_example, 
        inputs=[example_dropdown], 
        outputs=[GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1]
    )

    # Submit button functionality
    submit_btn.click(main_func, [GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1], [label, local_plot])

demo.launch()