Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,142 +1,121 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import gradio as gr
|
3 |
-
import shap
|
4 |
import numpy as np
|
5 |
-
import scipy as sp
|
6 |
import torch
|
7 |
-
import
|
8 |
-
import
|
9 |
-
from transformers import pipeline
|
10 |
-
from transformers import RobertaTokenizer, RobertaModel
|
11 |
-
from transformers import AutoModelForSequenceClassification
|
12 |
-
from transformers import TFAutoModelForSequenceClassification
|
13 |
-
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
14 |
-
|
15 |
-
import matplotlib.pyplot as plt
|
16 |
-
import sys
|
17 |
-
import csv
|
18 |
-
|
19 |
-
csv.field_size_limit(sys.maxsize)
|
20 |
-
|
21 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
22 |
-
|
23 |
-
tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1")
|
24 |
-
model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1").to(device)
|
25 |
-
|
26 |
-
# build a pipeline object to do predictions
|
27 |
-
pred = transformers.pipeline("text-classification", model=model,
|
28 |
-
tokenizer=tokenizer, return_all_scores=True)
|
29 |
-
|
30 |
-
explainer = shap.Explainer(pred)
|
31 |
-
|
32 |
-
##
|
33 |
-
# classifier = transformers.pipeline("text-classification", model = "cross-encoder/qnli-electra-base")
|
34 |
-
|
35 |
-
# def med_score(x):
|
36 |
-
# label = x['label']
|
37 |
-
# score_1 = x['score']
|
38 |
-
# return round(score_1,3)
|
39 |
|
40 |
-
|
41 |
-
# label2sym= x['label']
|
42 |
-
# score_1sym = x['score']
|
43 |
-
# return round(score_1sym,3)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
46 |
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
def adr_predict(x):
|
52 |
-
encoded_input = tokenizer(x, return_tensors='pt')
|
53 |
-
output = model(**encoded_input)
|
54 |
-
scores = output[0][0].detach().numpy()
|
55 |
-
scores = tf.nn.softmax(scores)
|
56 |
-
|
57 |
-
shap_values = explainer([str(x).lower()])
|
58 |
-
# # Find the index of the class you want as the default reference (e.g., 'label_1')
|
59 |
-
# label_1_index = np.where(np.array(explainer.output_names) == 'label_1')[0][0]
|
60 |
-
|
61 |
-
# # Plot the SHAP values for a specific instance in your dataset (e.g., instance 0)
|
62 |
-
# shap.plots.text(shap_values[label_1_index][0])
|
63 |
-
|
64 |
-
local_plot = shap.plots.text(shap_values[0], display=False)
|
65 |
-
|
66 |
-
# med = med_score(classifier(x+str(", There is a medication."))[0])
|
67 |
-
# sym = sym_score(classifier(x+str(", There is a symptom."))[0])
|
68 |
-
|
69 |
-
res = ner_pipe(x)
|
70 |
-
|
71 |
-
entity_colors = {
|
72 |
-
'Severity': 'red',
|
73 |
-
'Sign_symptom': 'green',
|
74 |
-
'Medication': 'lightblue',
|
75 |
-
'Age': 'yellow',
|
76 |
-
'Sex':'yellow',
|
77 |
-
'Diagnostic_procedure':'gray',
|
78 |
-
'Biological_structure':'silver'}
|
79 |
-
|
80 |
-
htext = ""
|
81 |
-
prev_end = 0
|
82 |
-
|
83 |
-
for entity in res:
|
84 |
-
start = entity['start']
|
85 |
-
end = entity['end']
|
86 |
-
word = entity['word'].replace("##", "")
|
87 |
-
color = entity_colors[entity['entity_group']]
|
88 |
-
|
89 |
-
htext += f"{x[prev_end:start]}<mark style='background-color:{color};'>{word}</mark>"
|
90 |
-
prev_end = end
|
91 |
-
|
92 |
-
htext += x[prev_end:]
|
93 |
-
|
94 |
-
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot,htext
|
95 |
-
# ,{"Contains Medication": float(med), "No Medications": float(1-med)} , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)}
|
96 |
-
|
97 |
-
|
98 |
-
def main(prob1):
|
99 |
-
text = str(prob1).lower()
|
100 |
-
obj = adr_predict(text)
|
101 |
-
return obj[0],obj[1],obj[2]
|
102 |
-
|
103 |
-
title = "Welcome to **ADR Detector** 🪐"
|
104 |
-
description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
|
105 |
-
|
106 |
-
with gr.Blocks(title=title) as demo:
|
107 |
-
gr.Markdown(f"## {title}")
|
108 |
-
gr.Markdown(description1)
|
109 |
-
gr.Markdown("""---""")
|
110 |
-
prob1 = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...")
|
111 |
-
submit_btn = gr.Button("Analyze")
|
112 |
|
113 |
with gr.Row():
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
,local_plot, htext
|
130 |
-
# , med, sym
|
131 |
-
], api_name="adr"
|
132 |
)
|
133 |
-
|
134 |
-
|
135 |
-
gr.Markdown("### Click on any of the examples below to see how it works:")
|
136 |
-
gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
|
137 |
-
["A 35 year-old female had minor pain in upper abdomen after taking Acetaminophen."]],
|
138 |
-
[prob1], [label,local_plot, htext
|
139 |
-
# , med, sym
|
140 |
-
], main, cache_examples=True)
|
141 |
-
|
142 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
|
|
2 |
import torch
|
3 |
+
import shap
|
4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
import gradio as gr
|
|
|
|
|
|
|
7 |
|
8 |
+
# 1) Device setup
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
# 2) Load ADR classifier
|
12 |
+
model_name = "paragon-analytics/ADRv1"
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
|
15 |
+
|
16 |
+
# 3) Hugging Face text‐classification pipeline with return_all_scores
|
17 |
+
pred_pipeline = pipeline(
|
18 |
+
"text-classification",
|
19 |
+
model=model,
|
20 |
+
tokenizer=tokenizer,
|
21 |
+
return_all_scores=True,
|
22 |
+
device=0 if device == "cuda" else -1
|
23 |
+
)
|
24 |
+
|
25 |
+
# 4) Wrapper: list[str]→np.ndarray of shape (n, n_classes)
|
26 |
+
def predict_proba(texts):
|
27 |
+
if isinstance(texts, str):
|
28 |
+
texts = [texts]
|
29 |
+
results = pred_pipeline(texts)
|
30 |
+
# results is List[List[{"label":…, "score":…}]]
|
31 |
+
probs = np.array([[d["score"] for d in sample] for sample in results])
|
32 |
+
return probs
|
33 |
+
|
34 |
+
# 5) Build SHAP explainer
|
35 |
+
masker = shap.maskers.Text(tokenizer) # for text explainability
|
36 |
+
# get output names from a dummy call
|
37 |
+
example = pred_pipeline(["test"])[0]
|
38 |
+
class_labels = [d["label"] for d in example]
|
39 |
+
explainer = shap.Explainer(
|
40 |
+
predict_proba,
|
41 |
+
masker=masker,
|
42 |
+
output_names=class_labels
|
43 |
+
)
|
44 |
+
|
45 |
+
# 6) Load biomedical NER pipeline
|
46 |
ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
47 |
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
48 |
+
ner_pipe = pipeline(
|
49 |
+
"ner",
|
50 |
+
model=ner_model,
|
51 |
+
tokenizer=ner_tokenizer,
|
52 |
+
aggregation_strategy="simple",
|
53 |
+
device=0 if device == "cuda" else -1
|
54 |
+
)
|
55 |
+
|
56 |
+
# 7) Single‐text prediction + SHAP + NER
|
57 |
+
def adr_predict(text):
|
58 |
+
# a) Predict probabilities
|
59 |
+
probs = predict_proba(text)[0]
|
60 |
+
prob_dict = {label: float(probs[i]) for i, label in enumerate(class_labels)}
|
61 |
+
|
62 |
+
# b) SHAP explanation (returns a Matplotlib figure)
|
63 |
+
shap_values = explainer([text])
|
64 |
+
fig = shap.plots.text(shap_values[0], display=False)
|
65 |
+
|
66 |
+
# c) NER highlighting
|
67 |
+
entities = ner_pipe(text)
|
68 |
+
colors = {
|
69 |
+
"Severity": "red",
|
70 |
+
"Sign_symptom": "green",
|
71 |
+
"Medication": "lightblue",
|
72 |
+
"Age": "yellow",
|
73 |
+
"Sex": "yellow",
|
74 |
+
"Diagnostic_procedure": "gray",
|
75 |
+
"Biological_structure": "silver"
|
76 |
+
}
|
77 |
+
highlighted = ""
|
78 |
+
last_idx = 0
|
79 |
+
for ent in entities:
|
80 |
+
start, end = ent["start"], ent["end"]
|
81 |
+
word = ent["word"].replace("##", "")
|
82 |
+
color = colors.get(ent["entity_group"], "lightgray")
|
83 |
+
highlighted += (
|
84 |
+
text[last_idx:start]
|
85 |
+
+ f"<mark style='background-color:{color};'>{word}</mark>"
|
86 |
+
)
|
87 |
+
last_idx = end
|
88 |
+
highlighted += text[last_idx:]
|
89 |
+
|
90 |
+
return prob_dict, fig, highlighted
|
91 |
+
|
92 |
+
# 8) Gradio UI
|
93 |
+
with gr.Blocks() as demo:
|
94 |
+
gr.Markdown("## Welcome to **ADR Detector** 🪐")
|
95 |
+
gr.Markdown(
|
96 |
+
"Predicts the likelihood your text describes a severe vs. non-severe adverse reaction. "
|
97 |
+
"_(Not for medical diagnosis.)_"
|
98 |
+
)
|
99 |
|
100 |
+
txt = gr.Textbox(label="Enter Your Text Here:", lines=3, placeholder="Type a sentence about a reaction…")
|
101 |
+
btn = gr.Button("Analyze")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
with gr.Row():
|
104 |
+
lbl = gr.Label(label="Predicted Probabilities")
|
105 |
+
shp = gr.Plot(label="SHAP Explanation")
|
106 |
+
ner = gr.HTML(label="Biomedical Entities Highlighted")
|
107 |
+
|
108 |
+
btn.click(fn=adr_predict, inputs=txt, outputs=[lbl, shp, ner])
|
109 |
+
|
110 |
+
gr.Examples(
|
111 |
+
examples=[
|
112 |
+
"A 35-year-old male experienced severe headache after taking Aspirin.",
|
113 |
+
"A 35-year-old female had minor abdominal pain after Acetaminophen."
|
114 |
+
],
|
115 |
+
inputs=txt,
|
116 |
+
outputs=[lbl, shp, ner],
|
117 |
+
fn=adr_predict,
|
118 |
+
cache_examples=True
|
|
|
|
|
|
|
119 |
)
|
120 |
+
|
121 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|