Spaces:
Sleeping
Sleeping
File size: 41,694 Bytes
e0f9aaf 62f366d 6e205e4 48c60b2 e0f9aaf ec4f8ef e0f9aaf af7ed6e ec4f8ef ddffe41 ec4f8ef a8ec3b5 ec4f8ef e0f9aaf ec4f8ef e0f9aaf a8ec3b5 62f366d a5be6bf 653f165 bb9c06e 653f165 3f29f2d a5be6bf e0f9aaf ec4f8ef e0f9aaf ec4f8ef ddffe41 ec4f8ef ddffe41 ec4f8ef ddffe41 ec4f8ef ddffe41 ec4f8ef 3f29f2d e62e166 e0f9aaf e62e166 e0f9aaf e62e166 ec4f8ef e62e166 e0f9aaf ec4f8ef e0f9aaf ec4f8ef e0f9aaf ec4f8ef f5d0ad1 ec4f8ef f5d0ad1 ec4f8ef ddffe41 ec4f8ef e0f9aaf ec4f8ef ddffe41 ec4f8ef ddffe41 e0f9aaf ec4f8ef e0f9aaf ec4f8ef 3f29f2d e0f9aaf e62e166 e0f9aaf e62e166 e0f9aaf ec4f8ef e62e166 ec4f8ef e62e166 e0f9aaf e62e166 e0f9aaf e62e166 e0f9aaf e62e166 8b69a1b ec4f8ef 3f29f2d 48c60b2 ce18da8 af7ed6e 71a9c0a f823b59 af7ed6e 71a9c0a af7ed6e 48c60b2 af7ed6e 71a9c0a 3f29f2d 653f165 ce18da8 3f29f2d af7ed6e 3f29f2d ce18da8 30a81c8 9edc658 af7ed6e 48c60b2 3f29f2d 6e205e4 3f29f2d 48c60b2 3f29f2d af7ed6e 3f29f2d 653f165 3f29f2d af7ed6e 48c60b2 af7ed6e 48c60b2 3f29f2d 653f165 ce18da8 48c60b2 af7ed6e 3f29f2d ec4f8ef 3f29f2d ec4f8ef 3f29f2d ec4f8ef 48c60b2 3f29f2d 48c60b2 3f29f2d af7ed6e 3f29f2d ce18da8 48c60b2 af7ed6e 3f29f2d 653f165 48c60b2 3f29f2d 653f165 48c60b2 653f165 3f29f2d 653f165 af7ed6e 653f165 3f29f2d 653f165 af7ed6e 653f165 af7ed6e 653f165 48c60b2 af7ed6e 3f29f2d 48c60b2 3f29f2d af7ed6e 653f165 3f29f2d 48c60b2 3f29f2d 653f165 3f29f2d 563e87a bb5dae7 47505aa bb5dae7 653f165 71a9c0a 653f165 3f29f2d 653f165 298bbe9 48c60b2 653f165 3f29f2d 653f165 af7ed6e 48c60b2 af7ed6e 48c60b2 af7ed6e 48c60b2 af7ed6e 48c60b2 af7ed6e 3f29f2d af7ed6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 |
import re
import os
import gradio as gr
import requests
import inspect
import datetime
from markdownify import markdownify
import textwrap
from textwrap import dedent
import pandas as pd
import wikipedia
import requests
from requests.exceptions import RequestException
from youtube_transcript_api import YouTubeTranscriptApi
from urllib.parse import urlparse, parse_qs
import json
from dotenv import load_dotenv
# Import smolagents components
from smolagents import (
tool,
CodeAgent,
HfApiModel,
DuckDuckGoSearchTool,
FinalAnswerTool,
OpenAIServerModel,
ToolCallingAgent
)
from pypdf import PdfReader
# Load environment variables from .env file
load_dotenv()
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
# Get the directory of the current script
current_dir = os.path.dirname(os.path.abspath(__file__))
# Create path to the validation directory
GAIA_LEVEL1_VALIDATION_FILES_PATH = os.path.join(
current_dir, "GAIA_level1", "validation")
# Initialize the search tool
search_tool = DuckDuckGoSearchTool()
@tool
def load_docx_file(file_path: str) -> str:
"""
Loads and returns text and tables from a DOCX file in their original order.
Args:
file_path: Path to the .docx file
Returns:
String with paragraphs and markdown-formatted tables in document order.
"""
from docx import Document
from docx.table import Table
from docx.text.paragraph import Paragraph
doc = Document(file_path)
content = []
table_count = 0
# Helper function to convert a table to markdown
def table_to_markdown(table, table_idx):
rows = []
for row in table.rows:
cells = [cell.text.strip() for cell in row.cells]
rows.append("| " + " | ".join(cells) + " |")
# Add markdown separator after header if table has at least one row
if rows:
separator = "| " + \
" | ".join(["---"] * len(table.rows[0].cells)) + " |"
markdown = f"\n### Table {table_idx}\n" + \
"\n".join([rows[0], separator] + rows[1:])
return markdown
return ""
# Iterate through the document's block elements in order
for block in doc.element.body:
if block.tag.endswith('}p'): # Paragraph
para = Paragraph(block, doc)
text = para.text.strip()
if text:
content.append(text)
elif block.tag.endswith('}tbl'): # Table
table_count += 1
table = Table(block, doc)
markdown = table_to_markdown(table, table_count)
if markdown:
content.append(markdown)
return "\n\n".join(content)
@tool
def load_pdf_file(file_path: str) -> str:
"""
Loads and returns text content from a PDF file.
Args:
file_path (str): The path to the .pdf file.
Returns:
str: The extracted text content from the PDF file. Returns an error message if the file cannot be processed.
"""
extracted_text = []
try:
# Check if the file exists
if not os.path.exists(file_path):
return f"Error: PDF file not found at path: {file_path}"
# Open the PDF file
reader = PdfReader(file_path)
# Iterate through each page and extract text
for page_num, page in enumerate(reader.pages):
text = page.extract_text()
if text: # Ensure text was extracted
extracted_text.append(f"--- Page {page_num + 1} ---\n{text.strip()}")
else:
extracted_text.append(f"--- Page {page_num + 1} --- (No text extracted)")
# Join the text from all pages
full_text = "\n\n".join(extracted_text)
if not full_text.strip():
return f"Warning: No text could be extracted from the PDF file: {file_path}"
return full_text
except Exception as e:
# Catch any other exceptions during PDF processing
return f"Error processing PDF file '{file_path}': {type(e).__name__}: {e}"
@tool
def load_xlsx_file_as_markdown(file_path: str) -> str:
"""
Loads data from all sheets of an XLSX file and returns it as a single
markdown-formatted string.
Args:
file_path (str): The path to the .xlsx file.
Returns:
str: A string containing the data from all sheets, formatted as markdown tables.
Returns an error message if the file cannot be processed.
"""
extracted_content = []
try:
# Check if the file exists
if not os.path.exists(file_path):
return f"Error: XLSX file not found at path: {file_path}"
# Read all sheets from the Excel file into a dictionary of DataFrames
# sheet_name=None reads all sheets
excel_data = pd.read_excel(file_path, sheet_name=None)
if not excel_data:
return f"Warning: No sheets found or the XLSX file is empty: {file_path}"
# Iterate through each sheet and convert its DataFrame to markdown
for sheet_name, df in excel_data.items():
if not df.empty:
# Convert DataFrame to markdown table string, excluding the index
markdown_table = df.to_markdown(index=False)
extracted_content.append(f"--- Sheet: {sheet_name} ---\n{markdown_table}")
else:
extracted_content.append(f"--- Sheet: {sheet_name} --- (Sheet is empty)")
# Join the content from all sheets
full_content = "\n\n".join(extracted_content)
if not full_content.strip():
return f"Warning: No data could be extracted from the XLSX file: {file_path}"
return full_content
except FileNotFoundError:
return f"Error: XLSX file not found at path: {file_path}"
except Exception as e:
# Catch pandas-specific errors or other general exceptions
return f"Error processing XLSX file '{file_path}': {type(e).__name__}: {e}"
@tool
def load_xlsx_file_as_dataframe(file_path: str) -> pd.DataFrame:
"""
Loads data from the first sheet of an XLSX file and returns it as a pandas DataFrame.
Args:
file_path (str): The path to the .xlsx file.
Returns:
pd.DataFrame: A pandas DataFrame containing the data from the first sheet.
Returns an empty DataFrame if the file is empty or cannot be processed.
"""
try:
# Check if the file exists
if not os.path.exists(file_path):
print(
f"Warning: XLSX file not found at path: {file_path}. Returning empty DataFrame.")
return pd.DataFrame()
# Read the first sheet (index 0) from the Excel file
# If the first sheet is empty or doesn't exist, it might raise an error or return empty
# Using try-except to handle cases where the sheet might not exist or is unreadable
df = pd.read_excel(file_path, sheet_name=0)
# Return the DataFrame (it will be empty if the sheet was empty)
return df
except FileNotFoundError:
# Return empty DataFrame if file not found (alternative to raising error)
print(
f"Warning: XLSX file not found at path: {file_path}. Returning empty DataFrame.")
return pd.DataFrame()
except Exception as e:
# Catch pandas-specific errors or other general exceptions
print(
f"Error processing XLSX file '{file_path}': {type(e).__name__}: {e}. Returning empty DataFrame.")
return pd.DataFrame() # Return empty DataFrame on error
@tool
def visit_webpage(url: str) -> str:
"""Visits a webpage at the given URL and returns its content as a markdown string.
Args:
url: The URL of the webpage to visit.
Returns:
The content of the webpage converted to Markdown, or an error message if the request fails.
"""
try:
# Send a GET request to the URL
response = requests.get(url, timeout=10)
response.raise_for_status() # Raise an exception for bad status codes
# Convert the HTML content to Markdown
markdown_content = markdownify(response.text).strip()
# Remove multiple line breaks
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
return markdown_content
except RequestException as e:
return f"Error fetching the webpage: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
@tool
def query_wikipedia(query: str, sentences: int = 5) -> str:
"""
Searches Wikipedia for a given query and returns a summary of the most relevant page.
Use this tool especially when Wikipedia is mentioned in the context.
Args:
query (str): The search term or question for Wikipedia.
sentences (int): The desired number of sentences for the summary (default: 5).
Returns:
str: A summary of the Wikipedia page, a list of options if the query is ambiguous,
or an error message if the page is not found or another error occurs.
"""
try:
# Set language if needed, defaults to English
# wikipedia.set_lang("en")
# auto_suggest=False prevents Wikipedia from guessing if the exact title isn't found.
# We handle potential suggestions in the PageError exception if needed.
summary = wikipedia.summary(
query, sentences=sentences, auto_suggest=False)
# Optionally, get the actual page title found
try:
page_title = wikipedia.page(query, auto_suggest=False).title
return f"Wikipedia Summary for '{page_title}':\n\n{summary}"
except wikipedia.exceptions.PageError:
# If getting the page title fails after summary worked (unlikely but possible)
return f"Wikipedia Summary (Query: '{query}'):\n\n{summary}"
except wikipedia.exceptions.DisambiguationError as e:
# If getting the page title causes disambiguation after summary worked
return f"Wikipedia Summary (Query: '{query}'):\n\n{summary}\n\nNote: Query might be ambiguous. Options include: {e.options}"
except wikipedia.exceptions.DisambiguationError as e:
# Handle cases where the query matches multiple pages
options_list = "\n - ".join(e.options[:10]) # Limit to 10 options
return (f"Wikipedia query '{query}' is ambiguous. "
f"Please be more specific or choose from these options:\n - {options_list}")
except wikipedia.exceptions.PageError:
# Handle cases where the page doesn't exist
# Try searching for suggestions
search_results = wikipedia.search(query, results=5)
if search_results:
suggestions = "\n - ".join(search_results)
return (f"Wikipedia page for '{query}' not found. "
f"Did you mean one of these?\n - {suggestions}")
else:
return f"Wikipedia page for '{query}' not found, and no suggestions available."
except Exception as e:
# Handle other potential errors (network issues, etc.)
return f"Error querying Wikipedia for '{query}': {type(e).__name__}: {e}"
@tool
def openai_reasoning(question: str) -> str:
"""
Uses OpenAI's GPT-4o model for in-depth reasoning and analysis of complex questions.
Use this for riddles, puzzles, or questions that require deep thinking rather than code execution.
Args:
question: The question or problem to analyze using GPT-4o's reasoning capabilities.
Returns:
The reasoned answer to the question.
"""
try:
# Create a specialized reasoning model instance
reasoning_model = OpenAIServerModel(
"gpt-4o",
max_tokens=1024,
temperature=0.05
)
# Craft effective system and user prompts
messages = [
{
"role": "system",
"content": """You are an expert reasoning engine specialized in solving complex problems, puzzles and riddles.
When tackling problems:
1. Understand the question thoroughly
2. Break down complex problems into parts
3. Consider multiple approaches before deciding on a solution
4. Think step by step
5. Provide only the final answer unless asked for reasoning
Be precise and concise in your final response."""
},
{
"role": "user",
"content": question
}
]
# Get the response
response = reasoning_model(messages)
# Return just the content from the response
return response.content
except Exception as e:
return f"Error when processing with reasoning model: {str(e)}"
@tool
def extract_youtube_id(url: str) -> str:
"""
Extract the YouTube video ID from a URL.
Args:
url: The YouTube video URL (may contain spaces or formatting issues)
Returns:
The YouTube video ID
"""
# Clean the URL by removing extra spaces
cleaned_url = url.replace(" ", "")
try:
# Handle different YouTube URL formats
parsed_url = urlparse(cleaned_url)
# Check for video ID in query parameters (youtube.com/watch?v=VIDEO_ID)
query_params = parse_qs(parsed_url.query)
if 'v' in query_params:
return query_params['v'][0]
# Check for youtu.be short links (youtu.be/VIDEO_ID)
if 'youtu.be' in parsed_url.netloc:
path = parsed_url.path.strip('/')
return path
# Check for embedded format (youtube.com/embed/VIDEO_ID)
if '/embed/' in parsed_url.path:
return parsed_url.path.split('/embed/')[1]
# If URL parsing fails, try regex patterns
patterns = [
r'(?:youtube\.com\/watch\?v=|youtu\.be\/|youtube\.com\/embed\/|youtube\.com\/v\/|youtube\.com\/e\/|youtube\.com\/watch\?.*v=|youtube\.com\/watch\?.*&v=)([^&\s]+)',
r'(?:youtube\.com\/shorts\/)([^&\s]+)',
r'v=([^&\s]+)'
]
for pattern in patterns:
match = re.search(pattern, cleaned_url)
if match:
return match.group(1)
# Try to extract directly from the raw string as a last resort
if 'v=' in cleaned_url:
v_index = cleaned_url.find('v=')
video_id = cleaned_url[v_index +
2:].split('&')[0].split('#')[0].split('?')[0].split('/')[0]
# YouTube IDs are typically 11 characters
if video_id and len(video_id) in range(10, 12):
return video_id
return "Could not extract a valid YouTube video ID from the provided URL."
except Exception as e:
# Attempt direct extraction if parsing fails
if 'v=' in url:
parts = url.split('v=')
if len(parts) > 1:
return parts[1].split('&')[0].split('#')[0].strip()
return f"Error extracting YouTube ID: {str(e)}"
@tool
def get_youtube_transcript(video_id: str, language: str = "en") -> str:
"""
Get the transcript of a YouTube video.
Args:
video_id: The YouTube video ID
language: The language code for the transcript (default: 'en' for English)
Returns:
The transcript text of the YouTube video
"""
try:
transcript_list = YouTubeTranscriptApi.get_transcript(
video_id, languages=[language])
# Combine all transcript segments into a single text
transcript_text = ""
for segment in transcript_list:
transcript_text += segment['text'] + " "
return transcript_text.strip()
except Exception as e:
return f"Error retrieving transcript: {str(e)}"
@tool
def load_text_file(file_path: str, detect_format: bool = True) -> str:
"""
Loads a text file and optionally detects and processes its format (plain text, code, JSON, etc.).
Args:
file_path: Path to the text file to load
detect_format: Whether to automatically detect and process the format (default: True)
Returns:
String containing the file content, possibly formatted based on detected type
"""
if not os.path.exists(file_path):
return f"Error: File not found at {file_path}"
try:
# Read the file content
with open(file_path, 'r', encoding='utf-8') as file:
content = file.read()
if not detect_format:
return f"File content ({os.path.basename(file_path)}):\n\n{content}"
# Get file extension
_, ext = os.path.splitext(file_path)
ext = ext.lower()
# Handle based on file extension or content detection
if ext in ['.json', '.geojson']:
# Process JSON
try:
parsed_json = json.loads(content)
formatted_json = json.dumps(parsed_json, indent=2)
return f"JSON content ({os.path.basename(file_path)}):\n\n{formatted_json}"
except json.JSONDecodeError:
return f"Warning: File has JSON extension but content is not valid JSON.\n\n{content}"
elif ext in ['.py', '.js', '.ts', '.java', '.c', '.cpp', '.cs', '.php', '.rb', '.go', '.rs', '.swift']:
# It's a code file, return with appropriate formatting
return f"Code file ({os.path.basename(file_path)}, {ext[1:]} language):\n\n{content}"
elif ext in ['.csv', '.tsv']:
# Handle CSV/TSV files with preview
lines = content.strip().split('\n')
preview_lines = lines[:min(10, len(lines))]
preview = '\n'.join(preview_lines)
if len(lines) > 10:
preview += f"\n\n[...and {len(lines) - 10} more lines]"
return f"Tabular data file ({os.path.basename(file_path)}):\n\n{preview}"
else:
# Try to detect JSON content regardless of extension
if content.strip().startswith('{') and content.strip().endswith('}'):
try:
parsed_json = json.loads(content)
formatted_json = json.dumps(parsed_json, indent=2)
return f"Detected JSON content ({os.path.basename(file_path)}):\n\n{formatted_json}"
except json.JSONDecodeError:
pass # Not valid JSON, continue with other detection
# Try to detect if it might be code
code_indicators = [
'def ', 'class ', 'function ', 'import ', 'from ', 'var ', 'let ', 'const ',
'#include', 'package ', 'using ', 'public class', 'int main'
]
if any(indicator in content for indicator in code_indicators):
language = "unknown programming language"
return f"Detected code file ({os.path.basename(file_path)}, {language}):\n\n{content}"
# Check if it's XML/HTML-like
if re.search(r'<\w+>.*?</\w+>', content, re.DOTALL) or content.strip().startswith('<?xml'):
return f"Markup language file ({os.path.basename(file_path)}):\n\n{content}"
# Default to plain text
return f"Plain text file ({os.path.basename(file_path)}):\n\n{content}"
except UnicodeDecodeError:
# Try different encoding if UTF-8 fails
try:
with open(file_path, 'r', encoding='latin-1') as file:
content = file.read()
return f"File content ({os.path.basename(file_path)}, non-UTF-8 encoding):\n\n{content}"
except Exception as e:
return f"Error reading file (encoding issues): {str(e)}"
except Exception as e:
return f"Error reading file: {str(e)}"
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
self.store_questions_to_log_file = False
# Create a filename with current date and time
current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M")
self.filename = f"questions_{current_time}.txt"
if self.store_questions_to_log_file:
print(f"Questions will be written to {self.filename}")
# Clear the file if it exists or create a new one
with open(self.filename, 'w', encoding='utf-8') as f:
f.write('') # Create empty file
# Initialize the Large Language Model
# The model is used by both agents in this simple setup
# mistralai/Mixtral-8x7B-Instruct-v0.1
# meta-llama/Llama-3.3-70B-Instruct
self.model = HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct")
#self.model = HfApiModel(model_id="mistralai/Mixtral-8x7B-Instruct-v0.1")
# For TGI container
# self.model = OpenAIServerModel(
# api_base="http://localhost:8080/v1", # If using TGI container
# api_key="not-needed", # Local servers usually don't need API keys
# model_id="Qwen/Qwen3-1.7B"
# )
# self.model = LiteLLMModel(
# model_name="ollama/qwen3:1.7b", # Prefix with 'ollama/' to use the Ollama provider
# api_base="http://localhost:11434", # Your custom Ollama port
# flatten_messages_as_text=True,
# api_key="", # Try passing an empty API key
# )
#print(self.model)
#print(f"Model Name: {self.model.model_name}")
#print(f"API Base: {self.model.api_base}")
# Define the Web Search Agent
# This agent is specialised for searching the web using a specific tool
# self.web_search_agent = CodeAgent(
# model=self.model, # Assign the model to the agent [
# tools=[DuckDuckGoSearchTool(),
# FinalAnswerTool()], # Provide the web search tool
# name="web_search_agent", # Give the agent a name
# # Describe its capability [
# description="""Searches the web for information.
# In the end you have to return a final answer using the `final_answer` tool.""",
# verbosity_level=1, # Set verbosity level for logging
# max_steps=3, # Limit the steps the agent can take
# planning_interval=2,
# )
self.web_search_specialist_agent = ToolCallingAgent(
model=self.model, # Or any other compatible model instance
tools=[
DuckDuckGoSearchTool(),
query_wikipedia, # Make sure this is the @tool decorated function
visit_webpage,
FinalAnswerTool()
],
name="web_search_specialist_agent",
description=textwrap.dedent("""\
This agent specializes in finding information on the web and answering questions based on web content.
**Core Strategy:**
1. **Understand & Plan:** For any query, especially complex ones or those requiring information from specific sources, first formulate a clear, step-by-step plan. Think about what information is needed and which tools are best for each step.
2. **Execute & Adapt:** Execute your plan step-by-step. After each step, review the results and adapt your plan if necessary.
3. **Extract & Synthesize:** Once relevant information is found (e.g., on a webpage), don't just return raw data. Carefully extract the specific piece of information that answers the original question.
**Tool Usage Guidelines:**
- Use the `DuckDuckGoSearchTool` for general web searches, to find broad information, current events, or to locate specific websites or pages when the URL is unknown.
- If `DuckDuckGoSearchTool` returns URLs, evaluate them. If a URL seems promising for answering the question, a subsequent step in your plan should be to use the `visit_webpage` tool.
- Use the `query_wikipedia` tool when the question specifically asks for information from Wikipedia, or when Wikipedia is clearly the most authoritative source (e.g., for definitions, historical events, biographical information).
- Use the `visit_webpage` tool to get the content of a specific URL.
- **Crucially**: After using `visit_webpage`, your next step is to analyze its content and extract the precise information needed to answer the query. Do not just output the entire page content as the answer.
- If the query explicitly mentions a specific website (e.g., "Merriam-Webster", "Cornell Law School website"), your plan should prioritize searching that site.
- Use `DuckDuckGoSearchTool` with site-specific queries (e.g., "site:merriam-webster.com <your actual query terms>").
- If a direct URL from that site is found or can be inferred, use `visit_webpage` to get the content, then extract the specific information.
**Search & Iteration Tactics:**
- Before taking a new action, review the information and results from your previous steps. Use this history to inform your decisions and refine your plan.
- Do not repeat the exact same or very similar queries to the same tool if the initial attempt did not yield useful information. Use knowledge from past attempts to refine your strategy.
- If information is not found, consider: rephrasing your query, trying a different aspect of the question, or using an alternative search tool, always considering what you've learned.
- Be aware of date format sensitivity in searches. If a date is part of your query, try alternative formats (e.g., "27 July 2010" vs "27/7/2010").
**Final Output:**
- In the end, you must return a final answer using the `final_answer` tool, based on the information you have gathered and processed according to your plan.
"""),
verbosity_level=1, # Adjust as needed
max_steps=3, # Adjust as needed
planning_interval=1 # Adjust as needed
)
# Define your model
self.code_model = "gpt-4.1" # or whatever model you're using
reasoning_model = OpenAIServerModel(
self.code_model,
max_completion_tokens=8096
)
# Create your agent with the reasoning tool and other tools
self.reasoning_agent = ToolCallingAgent(
model=reasoning_model,
tools=[openai_reasoning, FinalAnswerTool()],
planning_interval=2,
max_steps=5,
verbosity_level=1,
name="reasoning_agent",
description="""Solves complex problems riddles and puzzles through reasoning rather than code execution.
In the end you have to return a final answer using the `final_answer` tool."""
)
self.youtube_qa_agent = ToolCallingAgent(
model=reasoning_model, #self.model,
tools=[extract_youtube_id, get_youtube_transcript,
FinalAnswerTool()],
name="youtube_qa_agent",
planning_interval=2,
max_steps=5,
verbosity_level=1,
description=textwrap.dedent("""\
You are an expert assistant that can answer questions about YouTube videos by analyzing their transcripts.
When given a YouTube URL and a question, follow these steps IN ORDER:
1. Extract the video ID from the URL using the `extract_youtube_id` tool
2. Retrieve the transcript of the video using the `get_youtube_transcript` tool
3. Provide a clear and concise answer based solely on the transcript content
4. Return your final answer using the `final_answer` tool
IMPORTANT INSTRUCTIONS:
- After getting the transcript, you MUST use the analyze_transcript tool. DO NOT call get_youtube_transcript twice.
- Never skip the analysis step - it's crucial for answering the question correctly.
- Each tool must be used in the correct sequence - ID extraction, then transcript retrieval, then analysis.
If you cannot find a direct answer to the question in the transcript:
- Acknowledge that you couldn't find a specific answer
- Provide the transcript for reference
- Suggest that the user might want to use a different approach
DO NOT run the same tool with the same arguments multiple times.
DO NOT make up information that is not in the transcript.
""")
)
self.python_code_executer = CodeAgent(
model=reasoning_model,
tools=[load_text_file,
FinalAnswerTool()],
name="python_code_executer",
description=textwrap.dedent("""\
You are an expert assistant that can execute Python code.
Execute the Python code and return the final answer using the `final_answer` tool.
"""),
additional_authorized_imports=["json", "re", "pandas", "numpy", "math", "collections", "itertools", "stat", "statistics", "queue", "unicodedata", "time", "random", "datetime"],
verbosity_level=1,
max_steps=5,
planning_interval=1,
#executor_type="e2b",
#use_e2b_executor=True
)
# Define the Manager Agent
# This agent manages tasks and delegates to other agents
self.manager_agent = CodeAgent(
model=self.model, # Assign the model to the manager
tools=[load_docx_file,
load_pdf_file,
load_xlsx_file_as_dataframe,
load_xlsx_file_as_markdown,
query_wikipedia,
load_text_file,
FinalAnswerTool()],
# Specify the agents this manager oversees
managed_agents=[self.web_search_specialist_agent,
self.reasoning_agent,
self.youtube_qa_agent,
self.python_code_executer],
name="manager_agent", # Give the manager agent a name
description="Manages tasks by delegating to other agents.", # Describe its role
additional_authorized_imports=[
"json", "re", "pandas", "numpy", "math", "collections", "itertools", "stat", "statistics", "queue", "unicodedata", "time", "random", "datetime"], # Allow specific imports
verbosity_level=1, # Set verbosity level
max_steps=5, # Limit the steps
planning_interval=1,
#final_answer_checks=[]
)
print("MultiAgentSystem initialization complete.")
def __call__(self, question: str,
file_name: str = None) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
# For all other questions, use the manager agent with web search
# manager_prompt = dedent(f"""
# I need to answer the following question accurately:
# {question}
# Please analyze this question and determine the best approach to answer it.
# If needed, use web search to find relevant information.
# Provide a concise, accurate answer to the question.
# """)
manager_prompt = textwrap.dedent(f"""
I need to answer the following question accurately:
{question}
using the following file: '{file_name}' if provided.
Please analyze this question and determine the best approach to answer it
using the available agents and tools.
Note that you are provided with a special agent to resolve logical problems, riddles and puzzles named "reasoning_agent".
If needed, use any of the available tools to find or load the relevant information.
Provide a concise, accurate answer to the question.
""")
manager_agent_response = "I apologize, but I couldn't find an answer to this question."
source = ""
try:
manager_agent_response = self.manager_agent.run(manager_prompt)
source = "manager_agent"
# Check if the answer contains a missing tool warning
# if "Missing Tool Warning:" in manager_agent_response:
# return manager_agent_response
except Exception as e:
print(f"Error in manager agent: {e}")
source = f"Exception {e} "
# Append the question to the file
if self.store_questions_to_log_file:
with open(self.filename, 'a', encoding='utf-8') as f:
f.write(f"{question}\n")
f.write(f"ANSWER by {source}: {manager_agent_response}\n")
f.write(f"{'*'*50}\n")
print(f"Final answer: {manager_agent_response}")
return manager_agent_response
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
file_name = item.get("file_name", None)
if file_name:
file_name = os.path.join(GAIA_LEVEL1_VALIDATION_FILES_PATH, file_name)
continue
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text, file_name)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |