# coding=utf-8 # Copyright 2020 The Fairseq Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BART configuration """ import logging from .configuration_utils import PretrainedConfig logger = logging.getLogger(__name__) BART_PRETRAINED_CONFIG_ARCHIVE_MAP = { "bart-large": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-large/config.json", "bart-large-mnli": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-large-mnli/config.json", "bart-large-cnn": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-large-cnn/config.json", } class BartConfig(PretrainedConfig): r""" Configuration class for Bart. Parameters are renamed from the fairseq implementation """ model_type = "bart" pretrained_config_archive_map = BART_PRETRAINED_CONFIG_ARCHIVE_MAP def __init__( self, activation_dropout=0.0, vocab_size=50265, pad_token_id=1, eos_token_id=2, d_model=1024, encoder_ffn_dim=4096, encoder_layers=12, encoder_attention_heads=16, decoder_ffn_dim=4096, decoder_layers=12, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, attention_dropout=0.0, dropout=0.1, max_position_embeddings=1024, init_std=0.02, classifier_dropout=0.0, output_past=False, num_labels=3, bos_token_id=0, **common_kwargs ): r""" :class:`~transformers.BartConfig` is the configuration class for `BartModel`. Examples: config = BartConfig.from_pretrained('bart-large') model = BartModel(config) """ super().__init__( num_labels=num_labels, output_past=output_past, pad_token_id=pad_token_id, bos_token_id=bos_token_id, **common_kwargs, ) self.vocab_size = vocab_size self.d_model = d_model # encoder_embed_dim and decoder_embed_dim self.eos_token_id = eos_token_id self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = self.num_hidden_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.max_position_embeddings = max_position_embeddings self.init_std = init_std # Normal(0, this parameter) # 3 Types of Dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.dropout = dropout # Classifier stuff self.classif_dropout = classifier_dropout @property def num_attention_heads(self): return self.encoder_attention_heads @property def hidden_size(self): return self.d_model