import platform from argparse import ArgumentParser from transformers import __version__ as version from transformers import is_tf_available, is_torch_available from transformers.commands import BaseTransformersCLICommand def info_command_factory(_): return EnvironmentCommand() class EnvironmentCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): download_parser = parser.add_parser("env") download_parser.set_defaults(func=info_command_factory) def run(self): pt_version = "not installed" pt_cuda_available = "NA" if is_torch_available(): import torch pt_version = torch.__version__ pt_cuda_available = torch.cuda.is_available() tf_version = "not installed" tf_cuda_available = "NA" if is_tf_available(): import tensorflow as tf tf_version = tf.__version__ try: # deprecated in v2.1 tf_cuda_available = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool tf_cuda_available = bool(tf.config.list_physical_devices("GPU")) info = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": "{} ({})".format(pt_version, pt_cuda_available), "Tensorflow version (GPU?)": "{} ({})".format(tf_version, tf_cuda_available), "Using GPU in script?": "", "Using distributed or parallel set-up in script?": "", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n") print(self.format_dict(info)) return info @staticmethod def format_dict(d): return "\n".join(["- {}: {}".format(prop, val) for prop, val in d.items()]) + "\n"