from argparse import ArgumentParser, Namespace from logging import getLogger from transformers.commands import BaseTransformersCLICommand def convert_command_factory(args: Namespace): """ Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint. :return: ServeCommand """ return ConvertCommand( args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name ) class ConvertCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the transformer-cli :param parser: Root parser to register command-specific arguments :return: """ train_parser = parser.add_parser( "convert", help="CLI tool to run convert model from original " "author checkpoints to Transformers PyTorch checkpoints.", ) train_parser.add_argument("--model_type", type=str, required=True, help="Model's type.") train_parser.add_argument( "--tf_checkpoint", type=str, required=True, help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output", type=str, required=True, help="Path to the PyTorch savd model output." ) train_parser.add_argument("--config", type=str, default="", help="Configuration file path or folder.") train_parser.add_argument( "--finetuning_task_name", type=str, default=None, help="Optional fine-tuning task name if the TF model was a finetuned model.", ) train_parser.set_defaults(func=convert_command_factory) def __init__( self, model_type: str, tf_checkpoint: str, pytorch_dump_output: str, config: str, finetuning_task_name: str, *args ): self._logger = getLogger("transformers-cli/converting") self._logger.info("Loading model {}".format(model_type)) self._model_type = model_type self._tf_checkpoint = tf_checkpoint self._pytorch_dump_output = pytorch_dump_output self._config = config self._finetuning_task_name = finetuning_task_name def run(self): if self._model_type == "bert": try: from transformers.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: msg = ( "transformers can only be used from the commandline to convert TensorFlow models in PyTorch, " "In that case, it requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise ImportError(msg) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "gpt": from transformers.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from transformers.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: msg = ( "transformers can only be used from the commandline to convert TensorFlow models in PyTorch, " "In that case, it requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise ImportError(msg) if "ckpt" in self._tf_checkpoint.lower(): TF_CHECKPOINT = self._tf_checkpoint TF_DATASET_FILE = "" else: TF_DATASET_FILE = self._tf_checkpoint TF_CHECKPOINT = "" convert_transfo_xl_checkpoint_to_pytorch( TF_CHECKPOINT, self._config, self._pytorch_dump_output, TF_DATASET_FILE ) elif self._model_type == "gpt2": try: from transformers.convert_gpt2_original_tf_checkpoint_to_pytorch import ( convert_gpt2_checkpoint_to_pytorch, ) except ImportError: msg = ( "transformers can only be used from the commandline to convert TensorFlow models in PyTorch, " "In that case, it requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise ImportError(msg) convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "xlnet": try: from transformers.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: msg = ( "transformers can only be used from the commandline to convert TensorFlow models in PyTorch, " "In that case, it requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise ImportError(msg) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name ) elif self._model_type == "xlm": from transformers.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output) else: raise ValueError("--model_type should be selected in the list [bert, gpt, gpt2, transfo_xl, xlnet, xlm]")