import os import re import numpy as np from transformers.utils import logging logger = logging.get_logger(__name__) PREFIX_CHECKPOINT_DIR = "checkpoint" _re_checkpoint = re.compile(r"^" + PREFIX_CHECKPOINT_DIR + r"\-(\d+)$") def get_last_checkpoint(folder): content = os.listdir(folder) checkpoints = [ path for path in content if _re_checkpoint.search(path) is not None and os.path.isdir(os.path.join(folder, path)) ] if len(checkpoints) == 0: return return os.path.join(folder, max(checkpoints, key=lambda x: int(_re_checkpoint.search(x).groups()[0]))) def re_score(pred_relations, gt_relations, mode="strict"): """Evaluate RE predictions Args: pred_relations (list) : list of list of predicted relations (several relations in each sentence) gt_relations (list) : list of list of ground truth relations rel = { "head": (start_idx (inclusive), end_idx (exclusive)), "tail": (start_idx (inclusive), end_idx (exclusive)), "head_type": ent_type, "tail_type": ent_type, "type": rel_type} vocab (Vocab) : dataset vocabulary mode (str) : in 'strict' or 'boundaries'""" assert mode in ["strict", "boundaries"] relation_types = [v for v in [0, 1] if not v == 0] scores = {rel: {"tp": 0, "fp": 0, "fn": 0} for rel in relation_types + ["ALL"]} # Count GT relations and Predicted relations n_sents = len(gt_relations) n_rels = sum([len([rel for rel in sent]) for sent in gt_relations]) n_found = sum([len([rel for rel in sent]) for sent in pred_relations]) # Count TP, FP and FN per type for pred_sent, gt_sent in zip(pred_relations, gt_relations): for rel_type in relation_types: # strict mode takes argument types into account if mode == "strict": pred_rels = { (rel["head"], rel["head_type"], rel["tail"], rel["tail_type"]) for rel in pred_sent if rel["type"] == rel_type } gt_rels = { (rel["head"], rel["head_type"], rel["tail"], rel["tail_type"]) for rel in gt_sent if rel["type"] == rel_type } # boundaries mode only takes argument spans into account elif mode == "boundaries": pred_rels = {(rel["head"], rel["tail"]) for rel in pred_sent if rel["type"] == rel_type} gt_rels = {(rel["head"], rel["tail"]) for rel in gt_sent if rel["type"] == rel_type} scores[rel_type]["tp"] += len(pred_rels & gt_rels) scores[rel_type]["fp"] += len(pred_rels - gt_rels) scores[rel_type]["fn"] += len(gt_rels - pred_rels) # Compute per entity Precision / Recall / F1 for rel_type in scores.keys(): if scores[rel_type]["tp"]: scores[rel_type]["p"] = scores[rel_type]["tp"] / (scores[rel_type]["fp"] + scores[rel_type]["tp"]) scores[rel_type]["r"] = scores[rel_type]["tp"] / (scores[rel_type]["fn"] + scores[rel_type]["tp"]) else: scores[rel_type]["p"], scores[rel_type]["r"] = 0, 0 if not scores[rel_type]["p"] + scores[rel_type]["r"] == 0: scores[rel_type]["f1"] = ( 2 * scores[rel_type]["p"] * scores[rel_type]["r"] / (scores[rel_type]["p"] + scores[rel_type]["r"]) ) else: scores[rel_type]["f1"] = 0 # Compute micro F1 Scores tp = sum([scores[rel_type]["tp"] for rel_type in relation_types]) fp = sum([scores[rel_type]["fp"] for rel_type in relation_types]) fn = sum([scores[rel_type]["fn"] for rel_type in relation_types]) if tp: precision = tp / (tp + fp) recall = tp / (tp + fn) f1 = 2 * precision * recall / (precision + recall) else: precision, recall, f1 = 0, 0, 0 scores["ALL"]["p"] = precision scores["ALL"]["r"] = recall scores["ALL"]["f1"] = f1 scores["ALL"]["tp"] = tp scores["ALL"]["fp"] = fp scores["ALL"]["fn"] = fn # Compute Macro F1 Scores scores["ALL"]["Macro_f1"] = np.mean([scores[ent_type]["f1"] for ent_type in relation_types]) scores["ALL"]["Macro_p"] = np.mean([scores[ent_type]["p"] for ent_type in relation_types]) scores["ALL"]["Macro_r"] = np.mean([scores[ent_type]["r"] for ent_type in relation_types]) logger.info(f"RE Evaluation in *** {mode.upper()} *** mode") logger.info( "processed {} sentences with {} relations; found: {} relations; correct: {}.".format( n_sents, n_rels, n_found, tp ) ) logger.info( "\tALL\t TP: {};\tFP: {};\tFN: {}".format(scores["ALL"]["tp"], scores["ALL"]["fp"], scores["ALL"]["fn"]) ) logger.info("\t\t(m avg): precision: {:.2f};\trecall: {:.2f};\tf1: {:.2f} (micro)".format(precision, recall, f1)) logger.info( "\t\t(M avg): precision: {:.2f};\trecall: {:.2f};\tf1: {:.2f} (Macro)\n".format( scores["ALL"]["Macro_p"], scores["ALL"]["Macro_r"], scores["ALL"]["Macro_f1"] ) ) for rel_type in relation_types: logger.info( "\t{}: \tTP: {};\tFP: {};\tFN: {};\tprecision: {:.2f};\trecall: {:.2f};\tf1: {:.2f};\t{}".format( rel_type, scores[rel_type]["tp"], scores[rel_type]["fp"], scores[rel_type]["fn"], scores[rel_type]["p"], scores[rel_type]["r"], scores[rel_type]["f1"], scores[rel_type]["tp"] + scores[rel_type]["fp"], ) ) return scores