# Adapted from https://github.com/jmhessel/clipscore/blob/1036465276513621f77f1c2208d742e4a430781f/clipscore.py ''' Code for CLIPScore (https://arxiv.org/abs/2104.08718) @inproceedings{hessel2021clipscore, title={{CLIPScore:} A Reference-free Evaluation Metric for Image Captioning}, author={Hessel, Jack and Holtzman, Ari and Forbes, Maxwell and Bras, Ronan Le and Choi, Yejin}, booktitle={EMNLP}, year={2021} } ''' import argparse import clip from PIL import Image from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize import torch import tqdm import numpy as np import sklearn.preprocessing import collections import os import pathlib import json import warnings from packaging import version from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer from pycocoevalcap.meteor.meteor import Meteor from pycocoevalcap.bleu.bleu import Bleu from pycocoevalcap.cider.cider import Cider from pycocoevalcap.rouge.rouge import Rouge from pycocoevalcap.spice.spice import Spice def get_all_metrics(refs, cands, return_per_cap=False): metrics = [] names = [] pycoco_eval_cap_scorers = [(Bleu(4), 'bleu'), (Meteor(), 'meteor'), (Rouge(), 'rouge'), (Cider(), 'cider'), (Spice(), 'spice')] for scorer, name in pycoco_eval_cap_scorers: overall, per_cap = pycoco_eval(scorer, refs, cands) if return_per_cap: metrics.append(per_cap) else: metrics.append(overall) names.append(name) metrics = dict(zip(names, metrics)) return metrics def tokenize(refs, cands, no_op=False): # no_op is a debug option to see how significantly not using the PTB tokenizer # affects things tokenizer = PTBTokenizer() if no_op: refs = {idx: [r for r in c_refs] for idx, c_refs in enumerate(refs)} cands = {idx: [c] for idx, c in enumerate(cands)} else: refs = {idx: [{'caption':r} for r in c_refs] for idx, c_refs in enumerate(refs)} cands = {idx: [{'caption':c}] for idx, c in enumerate(cands)} refs = tokenizer.tokenize(refs) cands = tokenizer.tokenize(cands) return refs, cands def pycoco_eval(scorer, refs, cands): ''' scorer is assumed to have a compute_score function. refs is a list of lists of strings cands is a list of predictions ''' refs, cands = tokenize(refs, cands) average_score, scores = scorer.compute_score(refs, cands) return average_score, scores def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( 'candidates_json', type=str, help='Candidates json mapping from image_id --> candidate.') parser.add_argument( 'image_dir', type=str, help='Directory of images, with the filenames as image ids.') parser.add_argument( '--references_json', default=None, help='Optional references json mapping from image_id --> [list of references]') parser.add_argument( '--compute_other_ref_metrics', default=1, type=int, help='If references is specified, should we compute standard reference-based metrics?') parser.add_argument( '--save_per_instance', default=None, help='if set, we will save per instance clipscores to this file') args = parser.parse_args() if isinstance(args.save_per_instance, str) and not args.save_per_instance.endswith('.json'): print('if you\'re saving per-instance, please make sure the filepath ends in json.') quit() return args class CLIPCapDataset(torch.utils.data.Dataset): def __init__(self, data, prefix='A photo depicts'): self.data = data self.prefix = prefix if self.prefix[-1] != ' ': self.prefix += ' ' def __getitem__(self, idx): c_data = self.data[idx] c_data = clip.tokenize(self.prefix + c_data, truncate=True).squeeze() return {'caption': c_data} def __len__(self): return len(self.data) class CLIPImageDataset(torch.utils.data.Dataset): def __init__(self, data): self.data = data # only 224x224 ViT-B/32 supported for now self.preprocess = self._transform_test(224) def _transform_test(self, n_px): return Compose([ Resize(n_px, interpolation=Image.BICUBIC), CenterCrop(n_px), lambda image: image.convert("RGB"), ToTensor(), Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) def __getitem__(self, idx): c_data = self.data[idx] image = Image.open(c_data) image = self.preprocess(image) return {'image':image} def __len__(self): return len(self.data) def extract_all_captions(captions, model, device, batch_size=256, num_workers=8): data = torch.utils.data.DataLoader( CLIPCapDataset(captions), batch_size=batch_size, num_workers=num_workers, shuffle=False) all_text_features = [] with torch.no_grad(): for b in tqdm.tqdm(data): b = b['caption'].to(device) all_text_features.append(model.encode_text(b).cpu().numpy()) all_text_features = np.vstack(all_text_features) return all_text_features def extract_all_images(images, model, device, batch_size=64, num_workers=8): data = torch.utils.data.DataLoader( CLIPImageDataset(images), batch_size=batch_size, num_workers=num_workers, shuffle=False) all_image_features = [] with torch.no_grad(): for b in tqdm.tqdm(data): b = b['image'].to(device) if device == 'cuda': b = b.to(torch.float16) all_image_features.append(model.encode_image(b).cpu().numpy()) all_image_features = np.vstack(all_image_features) return all_image_features def get_clip_score(model, images, candidates, device, w=2.5): ''' get standard image-text clipscore. images can either be: - a list of strings specifying filepaths for images - a precomputed, ordered matrix of image features ''' if isinstance(images, list): # need to extract image features images = extract_all_images(images, model, device) candidates = extract_all_captions(candidates, model, device) #as of numpy 1.21, normalize doesn't work properly for float16 if version.parse(np.__version__) < version.parse('1.21'): images = sklearn.preprocessing.normalize(images, axis=1) candidates = sklearn.preprocessing.normalize(candidates, axis=1) else: warnings.warn( 'due to a numerical instability, new numpy normalization is slightly different than paper results. ' 'to exactly replicate paper results, please use numpy version less than 1.21, e.g., 1.20.3.') images = images / np.sqrt(np.sum(images**2, axis=1, keepdims=True)) candidates = candidates / np.sqrt(np.sum(candidates**2, axis=1, keepdims=True)) per = w*np.clip(np.sum(images * candidates, axis=1), 0, None) return np.mean(per), per, candidates def get_refonlyclipscore(model, references, candidates, device): ''' The text only side for refclipscore ''' if isinstance(candidates, list): candidates = extract_all_captions(candidates, model, device) flattened_refs = [] flattened_refs_idxs = [] for idx, refs in enumerate(references): flattened_refs.extend(refs) flattened_refs_idxs.extend([idx for _ in refs]) flattened_refs = extract_all_captions(flattened_refs, model, device) if version.parse(np.__version__) < version.parse('1.21'): candidates = sklearn.preprocessing.normalize(candidates, axis=1) flattened_refs = sklearn.preprocessing.normalize(flattened_refs, axis=1) else: warnings.warn( 'due to a numerical instability, new numpy normalization is slightly different than paper results. ' 'to exactly replicate paper results, please use numpy version less than 1.21, e.g., 1.20.3.') candidates = candidates / np.sqrt(np.sum(candidates**2, axis=1, keepdims=True)) flattened_refs = flattened_refs / np.sqrt(np.sum(flattened_refs**2, axis=1, keepdims=True)) cand_idx2refs = collections.defaultdict(list) for ref_feats, cand_idx in zip(flattened_refs, flattened_refs_idxs): cand_idx2refs[cand_idx].append(ref_feats) assert len(cand_idx2refs) == len(candidates) cand_idx2refs = {k: np.vstack(v) for k, v in cand_idx2refs.items()} per = [] for c_idx, cand in tqdm.tqdm(enumerate(candidates)): cur_refs = cand_idx2refs[c_idx] all_sims = cand.dot(cur_refs.transpose()) per.append(np.max(all_sims)) return np.mean(per), per def cal_clipscore(image_ids, image_paths, text_list, device=None, references=None, scale_weight=1): if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" model, transform = clip.load("ViT-B/32", device=device, jit=False) model.eval() image_feats = extract_all_images(image_paths, model, device, batch_size=64, num_workers=8) # get image-text clipscore _, per_instance_image_text, candidate_feats = get_clip_score(model, image_feats, text_list, device, w=scale_weight) if references: # get text-text clipscore _, per_instance_text_text = get_refonlyclipscore(model, references, candidate_feats, device) # F-score refclipscores = 2 * per_instance_image_text * per_instance_text_text / (per_instance_image_text + per_instance_text_text) scores = {image_id: {'CLIPScore': float(clipscore), 'RefCLIPScore': float(refclipscore)} for image_id, clipscore, refclipscore in zip(image_ids, per_instance_image_text, refclipscores)} other_metrics = get_all_metrics(references, text_list) for k, v in other_metrics.items(): if k == 'bleu': for bidx, sc in enumerate(v): print('BLEU-{}: {:.4f}'.format(bidx+1, sc)) else: print('{}: {:.4f}'.format(k.upper(), v)) print('CLIPScore: {:.4f}'.format(np.mean([s['CLIPScore'] for s in scores.values()]))) print('RefCLIPScore: {:.4f}'.format(np.mean([s['RefCLIPScore'] for s in scores.values()]))) else: scores = {image_id: {'CLIPScore': float(clipscore)} for image_id, clipscore in zip(image_ids, per_instance_image_text)} print('CLIPScore: {:.4f}'.format(np.mean([s['CLIPScore'] for s in scores.values()]))) return scores def main(): args = parse_args() image_paths = [os.path.join(args.image_dir, path) for path in os.listdir(args.image_dir) if path.endswith(('.png', '.jpg', '.jpeg', '.tiff'))] image_ids = [pathlib.Path(path).stem for path in image_paths] with open(args.candidates_json) as f: candidates = json.load(f) candidates = [candidates[cid] for cid in image_ids] if args.references_json: with open(args.references_json) as f: references = json.load(f) references = [references[cid] for cid in image_ids] if isinstance(references[0], str): references = [[r] for r in references] device = "cuda" if torch.cuda.is_available() else "cpu" if device == 'cpu': warnings.warn( 'CLIP runs in full float32 on CPU. Results in paper were computed on GPU, which uses float16. ' 'If you\'re reporting results on CPU, please note this when you report.') model, transform = clip.load("ViT-B/32", device=device, jit=False) model.eval() image_feats = extract_all_images( image_paths, model, device, batch_size=64, num_workers=8) # get image-text clipscore _, per_instance_image_text, candidate_feats = get_clip_score( model, image_feats, candidates, device) if args.references_json: # get text-text clipscore _, per_instance_text_text = get_refonlyclipscore( model, references, candidate_feats, device) # F-score refclipscores = 2 * per_instance_image_text * per_instance_text_text / (per_instance_image_text + per_instance_text_text) scores = {image_id: {'CLIPScore': float(clipscore), 'RefCLIPScore': float(refclipscore)} for image_id, clipscore, refclipscore in zip(image_ids, per_instance_image_text, refclipscores)} else: scores = {image_id: {'CLIPScore': float(clipscore)} for image_id, clipscore in zip(image_ids, per_instance_image_text)} print('CLIPScore: {:.4f}'.format(np.mean([s['CLIPScore'] for s in scores.values()]))) if args.references_json: if args.compute_other_ref_metrics: other_metrics = generation_eval_utils.get_all_metrics(references, candidates) for k, v in other_metrics.items(): if k == 'bleu': for bidx, sc in enumerate(v): print('BLEU-{}: {:.4f}'.format(bidx+1, sc)) else: print('{}: {:.4f}'.format(k.upper(), v)) print('CLIPScore: {:.4f}'.format(np.mean([s['CLIPScore'] for s in scores.values()]))) print('RefCLIPScore: {:.4f}'.format(np.mean([s['RefCLIPScore'] for s in scores.values()]))) if args.save_per_instance: with open(args.save_per_instance, 'w') as f: f.write(json.dumps(scores)) if __name__ == '__main__': main()