# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from math import log import torch from fairseq import utils from fairseq.data import LanguagePairDataset from fairseq.dataclass import ChoiceEnum from fairseq.tasks import register_task from fairseq.tasks.translation import TranslationConfig, TranslationTask, load_langpair_dataset from fairseq.utils import new_arange import logging from omegaconf import II import numpy as np NOISE_CHOICES = ChoiceEnum(["random_delete", "random_mask", "no_noise", "full_mask", "block_mask"]) @dataclass class TranslationLevenshteinConfig(TranslationConfig): noise: NOISE_CHOICES = field( default="random_delete", metadata={ "help": "type of noise" }, ) start_p: float = field( default=0.5, metadata={"help": "minus prob"} ) minus_p: float = field( default=0.2, metadata={"help": "minus prob"} ) total_up: int = field( default=300000, metadata={"help": "total updates"} ) block_size: int = field( default=5, metadata={"help": "block size"} ) logger = logging.getLogger(__name__) @register_task("translation_lev_modified", dataclass=TranslationLevenshteinConfig) class TranslationLevenshteinModifiedTask(TranslationTask): """ Translation (Sequence Generation) task for Levenshtein Transformer See `"Levenshtein Transformer" `_. """ cfg: TranslationLevenshteinConfig def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.cfg.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] # infer langcode src, tgt = self.cfg.source_lang, self.cfg.target_lang self.datasets[split] = load_langpair_dataset( data_path, split, src, self.src_dict, tgt, self.tgt_dict, combine=combine, dataset_impl=self.cfg.dataset_impl, upsample_primary=self.cfg.upsample_primary, left_pad_source=self.cfg.left_pad_source, left_pad_target=self.cfg.left_pad_target, max_source_positions=self.cfg.max_source_positions, max_target_positions=self.cfg.max_target_positions, truncate_source=self.cfg.truncate_source, ) def inject_noise(self, target_tokens): def _random_delete(target_tokens): pad = self.tgt_dict.pad() bos = self.tgt_dict.bos() eos = self.tgt_dict.eos() max_len = target_tokens.size(1) target_mask = target_tokens.eq(pad) target_score = target_tokens.clone().float().uniform_() target_score.masked_fill_( target_tokens.eq(bos) | target_tokens.eq(eos), 0.0 ) target_score.masked_fill_(target_mask, 1) target_score, target_rank = target_score.sort(1) target_length = target_mask.size(1) - target_mask.float().sum( 1, keepdim=True ) # do not delete and (we assign 0 score for them) target_cutoff = ( 2 + ( (target_length - 2) * target_score.new_zeros(target_score.size(0), 1).uniform_() ).long() ) target_cutoff = target_score.sort(1)[1] >= target_cutoff prev_target_tokens = ( target_tokens.gather(1, target_rank) .masked_fill_(target_cutoff, pad) .gather(1, target_rank.masked_fill_(target_cutoff, max_len).sort(1)[1]) ) prev_target_tokens = prev_target_tokens[ :, : prev_target_tokens.ne(pad).sum(1).max() ] return prev_target_tokens def _random_mask(target_tokens): pad = self.tgt_dict.pad() bos = self.tgt_dict.bos() eos = self.tgt_dict.eos() unk = self.tgt_dict.unk() target_masks = ( target_tokens.ne(pad) & target_tokens.ne(bos) & target_tokens.ne(eos) ) target_score = target_tokens.clone().float().uniform_() target_score.masked_fill_(~target_masks, 2.0) target_length = target_masks.sum(1).float() target_length = target_length * target_length.clone().uniform_() target_length = target_length + 1 # make sure to mask at least one token. _, target_rank = target_score.sort(1) target_cutoff = new_arange(target_rank) < target_length[:, None].long() prev_target_tokens = target_tokens.masked_fill( target_cutoff.scatter(1, target_rank, target_cutoff), unk ) return prev_target_tokens def _full_mask(target_tokens): pad = self.tgt_dict.pad() bos = self.tgt_dict.bos() eos = self.tgt_dict.eos() unk = self.tgt_dict.unk() target_mask = ( target_tokens.eq(bos) | target_tokens.eq(eos) | target_tokens.eq(pad) ) return target_tokens.masked_fill(~target_mask, unk) def _block_mask(target_tokens): block_size = self.cfg.block_size pad = self.tgt_dict.pad() unk = self.tgt_dict.unk() target_masks = target_tokens.ne(pad) target_length = target_masks.sum(1).float() cutoff_length = target_length * target_length.clone().uniform_() cutoff_length = cutoff_length.int() + 1 # make sure to mask at least one token. prev_target_tokens = torch.ones((target_tokens.size(0), target_tokens.size(1) + block_size)).to(target_tokens) padded_target_tokens = torch.ones((target_tokens.size(0), target_tokens.size(1) + block_size)).to(target_tokens) for i in range(target_tokens.size(0)): remain_length = target_length[i].int() - cutoff_length[i] prev_target_tokens[i][:remain_length] = target_tokens[i][:remain_length] prev_target_tokens[i][remain_length:block_size + remain_length] = unk padded_target_tokens[i][:target_tokens.size(1)] = target_tokens[i] prev_target_tokens = prev_target_tokens[ :, : prev_target_tokens.ne(pad).sum(1).max() ] padded_target_tokens = padded_target_tokens[ :, : prev_target_tokens.ne(pad).sum(1).max() ] return prev_target_tokens, padded_target_tokens if self.cfg.noise == "random_delete": return _random_delete(target_tokens) elif self.cfg.noise == "random_mask": return _random_mask(target_tokens) elif self.cfg.noise == "block_mask": return _block_mask(target_tokens) elif self.cfg.noise == "full_mask": return _full_mask(target_tokens) elif self.cfg.noise == "no_noise": return target_tokens else: raise NotImplementedError def build_generator(self, models, args, **unused): # add models input to match the API for SequenceGenerator from fairseq.iterative_refinement_generator import IterativeRefinementGenerator return IterativeRefinementGenerator( self.target_dictionary, eos_penalty=getattr(args, "iter_decode_eos_penalty", 0.0), max_iter=getattr(args, "iter_decode_max_iter", 10), beam_size=getattr(args, "iter_decode_with_beam", 1), reranking=getattr(args, "iter_decode_with_external_reranker", False), decoding_format=getattr(args, "decoding_format", None), adaptive=not getattr(args, "iter_decode_force_max_iter", False), retain_history=getattr(args, "retain_iter_history", False), ) def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None): if constraints is not None: # Though see Susanto et al. (ACL 2020): https://www.aclweb.org/anthology/2020.acl-main.325/ raise NotImplementedError( "Constrained decoding with the translation_lev task is not supported" ) return LanguagePairDataset( src_tokens, src_lengths, self.source_dictionary, append_bos=False ) def train_step( self, sample, model, criterion, optimizer, update_num, ignore_grad=False ): model.train() train_ratio = max(0, min(1, update_num / self.cfg.total_up)) sample["glat"] = {"context_p": self.cfg.start_p - self.cfg.minus_p * train_ratio} sample["prev_target"], sample["target"] = self.inject_noise(sample["target"]) with torch.autograd.profiler.record_function("forward"): loss, sample_size, logging_output = criterion(model, sample) if ignore_grad: loss *= 0 with torch.autograd.profiler.record_function("backward"): optimizer.backward(loss) return loss, sample_size, logging_output def valid_step(self, sample, model, criterion): model.eval() with torch.no_grad(): sample["prev_target"], sample["target"] = self.inject_noise(sample["target"]) loss, sample_size, logging_output = criterion(model, sample) EVAL_BLEU_ORDER = 4 if self.cfg.eval_bleu: bleu = self._inference_with_bleu(self.sequence_generator, sample, model) logging_output["_bleu_sys_len"] = bleu.sys_len logging_output["_bleu_ref_len"] = bleu.ref_len # we split counts into separate entries so that they can be # summed efficiently across workers using fast-stat-sync assert len(bleu.counts) == EVAL_BLEU_ORDER for i in range(EVAL_BLEU_ORDER): logging_output["_bleu_counts_" + str(i)] = bleu.counts[i] logging_output["_bleu_totals_" + str(i)] = bleu.totals[i] return loss, sample_size, logging_output def _inference_with_bleu(self, generator, sample, model): import sacrebleu def decode(toks, escape_unk=False): s = self.tgt_dict.string( toks.int().cpu(), self.cfg.eval_bleu_remove_bpe, # The default unknown string in fairseq is ``, but # this is tokenized by sacrebleu as `< unk >`, inflating # BLEU scores. Instead, we use a somewhat more verbose # alternative that is unlikely to appear in the real # reference, but doesn't get split into multiple tokens. unk_string=("UNKNOWNTOKENINREF" if escape_unk else "UNKNOWNTOKENINHYP"), ) if self.tokenizer: s = self.tokenizer.decode(s) return s gen_out = self.inference_step(generator, [model], sample, prefix_tokens=None) hyps, refs = [], [] for i in range(len(gen_out)): hyps.append(decode(gen_out[i][0]["tokens"])) refs.append( decode( utils.strip_pad(sample["target"][i], self.tgt_dict.pad()), escape_unk=True, # don't count as matches to the hypo ) ) if self.cfg.eval_bleu_print_samples: logger.info("example hypothesis: " + hyps[0]) logger.info("example reference: " + refs[0]) if self.cfg.eval_tokenized_bleu: return sacrebleu.corpus_bleu(hyps, [refs], tokenize="none") else: return sacrebleu.corpus_bleu(hyps, [refs])