Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch RoBERTa model. """ | |
import logging | |
import torch | |
import torch.nn as nn | |
from torch.nn import CrossEntropyLoss, MSELoss | |
from .configuration_roberta import RobertaConfig | |
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable | |
from .modeling_bert import BertEmbeddings, BertLayerNorm, BertModel, BertPreTrainedModel, gelu | |
from .modeling_utils import create_position_ids_from_input_ids | |
logger = logging.getLogger(__name__) | |
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP = { | |
"roberta-base": "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-pytorch_model.bin", | |
"roberta-large": "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-pytorch_model.bin", | |
"roberta-large-mnli": "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-pytorch_model.bin", | |
"distilroberta-base": "https://s3.amazonaws.com/models.huggingface.co/bert/distilroberta-base-pytorch_model.bin", | |
"roberta-base-openai-detector": "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-openai-detector-pytorch_model.bin", | |
"roberta-large-openai-detector": "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-openai-detector-pytorch_model.bin", | |
} | |
class RobertaEmbeddings(BertEmbeddings): | |
""" | |
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. | |
""" | |
def __init__(self, config): | |
super().__init__(config) | |
self.padding_idx = 1 | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx) | |
self.position_embeddings = nn.Embedding( | |
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx | |
) | |
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): | |
if position_ids is None: | |
if input_ids is not None: | |
# Create the position ids from the input token ids. Any padded tokens remain padded. | |
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device) | |
else: | |
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) | |
return super().forward( | |
input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds | |
) | |
def create_position_ids_from_inputs_embeds(self, inputs_embeds): | |
""" We are provided embeddings directly. We cannot infer which are padded so just generate | |
sequential position ids. | |
:param torch.Tensor inputs_embeds: | |
:return torch.Tensor: | |
""" | |
input_shape = inputs_embeds.size()[:-1] | |
sequence_length = input_shape[1] | |
position_ids = torch.arange( | |
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device | |
) | |
return position_ids.unsqueeze(0).expand(input_shape) | |
ROBERTA_START_DOCSTRING = r""" | |
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general | |
usage and behavior. | |
Parameters: | |
config (:class:`~transformers.RobertaConfig`): Model configuration class with all the parameters of the | |
model. Initializing with a config file does not load the weights associated with the model, only the configuration. | |
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. | |
""" | |
ROBERTA_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using :class:`transformers.RobertaTokenizer`. | |
See :func:`transformers.PreTrainedTokenizer.encode` and | |
:func:`transformers.PreTrainedTokenizer.encode_plus` for details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Mask to avoid performing attention on padding token indices. | |
Mask values selected in ``[0, 1]``: | |
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Segment token indices to indicate first and second portions of the inputs. | |
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` | |
corresponds to a `sentence B` token | |
`What are token type IDs? <../glossary.html#token-type-ids>`_ | |
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Indices of positions of each input sequence tokens in the position embeddings. | |
Selected in the range ``[0, config.max_position_embeddings - 1]``. | |
`What are position IDs? <../glossary.html#position-ids>`_ | |
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`): | |
Mask to nullify selected heads of the self-attention modules. | |
Mask values selected in ``[0, 1]``: | |
:obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**. | |
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
""" | |
class RobertaModel(BertModel): | |
""" | |
This class overrides :class:`~transformers.BertModel`. Please check the | |
superclass for the appropriate documentation alongside usage examples. | |
""" | |
config_class = RobertaConfig | |
pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP | |
base_model_prefix = "roberta" | |
def __init__(self, config): | |
super().__init__(config) | |
self.embeddings = RobertaEmbeddings(config) | |
self.init_weights() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
class RobertaForMaskedLM(BertPreTrainedModel): | |
config_class = RobertaConfig | |
pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP | |
base_model_prefix = "roberta" | |
def __init__(self, config): | |
super().__init__(config) | |
self.roberta = RobertaModel(config) | |
self.lm_head = RobertaLMHead(config) | |
self.init_weights() | |
def get_output_embeddings(self): | |
return self.lm_head.decoder | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
masked_lm_labels=None, | |
): | |
r""" | |
masked_lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Labels for computing the masked language modeling loss. | |
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) | |
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels | |
in ``[0, ..., config.vocab_size]`` | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs: | |
masked_lm_loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Masked language modeling loss. | |
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`) | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
from transformers import RobertaTokenizer, RobertaForMaskedLM | |
import torch | |
tokenizer = RobertaTokenizer.from_pretrained('roberta-base') | |
model = RobertaForMaskedLM.from_pretrained('roberta-base') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, masked_lm_labels=input_ids) | |
loss, prediction_scores = outputs[:2] | |
""" | |
outputs = self.roberta( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
) | |
sequence_output = outputs[0] | |
prediction_scores = self.lm_head(sequence_output) | |
outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here | |
if masked_lm_labels is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) | |
outputs = (masked_lm_loss,) + outputs | |
return outputs # (masked_lm_loss), prediction_scores, (hidden_states), (attentions) | |
class RobertaLMHead(nn.Module): | |
"""Roberta Head for masked language modeling.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.layer_norm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
self.decoder.bias = self.bias | |
def forward(self, features, **kwargs): | |
x = self.dense(features) | |
x = gelu(x) | |
x = self.layer_norm(x) | |
# project back to size of vocabulary with bias | |
x = self.decoder(x) | |
return x | |
class RobertaForMultiTaskSequenceClassification(BertPreTrainedModel): | |
config_class = RobertaConfig | |
pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP | |
base_model_prefix = "roberta" | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.roberta = RobertaModel(config) | |
self.classifiers = nn.ModuleList( | |
[RobertaMultiTaskClassificationHead(config, i) for i in range(len(self.num_labels))]) | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
task_idx=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): | |
Labels for computing the sequence classification/regression loss. | |
Indices should be in :obj:`[0, ..., config.num_labels - 1]`. | |
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided): | |
Classification (or regression if config.num_labels==1) loss. | |
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): | |
Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
from transformers import RobertaTokenizer, RobertaForSequenceClassification | |
import torch | |
tokenizer = RobertaTokenizer.from_pretrained('roberta-base') | |
model = RobertaForSequenceClassification.from_pretrained('roberta-base') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 | |
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, logits = outputs[:2] | |
""" | |
outputs = self.roberta( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
) | |
sequence_output = outputs[0] | |
logits = self.classifiers[task_idx](sequence_output) | |
outputs = (logits,) + outputs[2:] | |
if labels is not None: | |
if self.num_labels[task_idx] == 1: | |
# We are doing regression | |
loss_fct = MSELoss() | |
loss = loss_fct(logits.view(-1), labels.view(-1)) | |
else: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels[task_idx]), labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs # (loss), logits, (hidden_states), (attentions) | |
class RobertaForSequenceClassification(BertPreTrainedModel): | |
config_class = RobertaConfig | |
pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP | |
base_model_prefix = "roberta" | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.roberta = RobertaModel(config) | |
self.classifier = RobertaClassificationHead(config) | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): | |
Labels for computing the sequence classification/regression loss. | |
Indices should be in :obj:`[0, ..., config.num_labels - 1]`. | |
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided): | |
Classification (or regression if config.num_labels==1) loss. | |
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): | |
Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
from transformers import RobertaTokenizer, RobertaForSequenceClassification | |
import torch | |
tokenizer = RobertaTokenizer.from_pretrained('roberta-base') | |
model = RobertaForSequenceClassification.from_pretrained('roberta-base') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 | |
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, logits = outputs[:2] | |
""" | |
outputs = self.roberta( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
) | |
sequence_output = outputs[0] | |
logits = self.classifier(sequence_output) | |
outputs = (logits,) + outputs[2:] | |
if labels is not None: | |
if self.num_labels == 1: | |
# We are doing regression | |
loss_fct = MSELoss() | |
loss = loss_fct(logits.view(-1), labels.view(-1)) | |
else: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs # (loss), logits, (hidden_states), (attentions) | |
class RobertaForMultipleChoice(BertPreTrainedModel): | |
config_class = RobertaConfig | |
pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP | |
base_model_prefix = "roberta" | |
def __init__(self, config): | |
super().__init__(config) | |
self.roberta = RobertaModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, 1) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
token_type_ids=None, | |
attention_mask=None, | |
labels=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): | |
Labels for computing the multiple choice classification loss. | |
Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension | |
of the input tensors. (see `input_ids` above) | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs: | |
loss (:obj:`torch.FloatTensor`` of shape ``(1,)`, `optional`, returned when :obj:`labels` is provided): | |
Classification loss. | |
classification_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`): | |
`num_choices` is the second dimension of the input tensors. (see `input_ids` above). | |
Classification scores (before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
from transformers import RobertaTokenizer, RobertaForMultipleChoice | |
import torch | |
tokenizer = RobertaTokenizer.from_pretrained('roberta-base') | |
model = RobertaForMultipleChoice.from_pretrained('roberta-base') | |
choices = ["Hello, my dog is cute", "Hello, my cat is amazing"] | |
input_ids = torch.tensor([tokenizer.encode(s, add_special_tokens=True) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices | |
labels = torch.tensor(1).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, classification_scores = outputs[:2] | |
""" | |
num_choices = input_ids.shape[1] | |
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) | |
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
outputs = self.roberta( | |
flat_input_ids, | |
position_ids=flat_position_ids, | |
token_type_ids=flat_token_type_ids, | |
attention_mask=flat_attention_mask, | |
head_mask=head_mask, | |
) | |
pooled_output = outputs[1] | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
reshaped_logits = logits.view(-1, num_choices) | |
outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
outputs = (loss,) + outputs | |
return outputs # (loss), reshaped_logits, (hidden_states), (attentions) | |
class RobertaForTokenClassification(BertPreTrainedModel): | |
config_class = RobertaConfig | |
pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP | |
base_model_prefix = "roberta" | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.roberta = RobertaModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Labels for computing the token classification loss. | |
Indices should be in ``[0, ..., config.num_labels - 1]``. | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) : | |
Classification loss. | |
scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`) | |
Classification scores (before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
from transformers import RobertaTokenizer, RobertaForTokenClassification | |
import torch | |
tokenizer = RobertaTokenizer.from_pretrained('roberta-base') | |
model = RobertaForTokenClassification.from_pretrained('roberta-base') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 | |
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, scores = outputs[:2] | |
""" | |
outputs = self.roberta( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# Only keep active parts of the loss | |
if attention_mask is not None: | |
active_loss = attention_mask.view(-1) == 1 | |
active_logits = logits.view(-1, self.num_labels) | |
active_labels = torch.where( | |
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) | |
) | |
loss = loss_fct(active_logits, active_labels) | |
else: | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs # (loss), scores, (hidden_states), (attentions) | |
class RobertaMultiTaskClassificationHead(nn.Module): | |
"""Head for sentence-level classification tasks.""" | |
def __init__(self, config, i): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels[i]) | |
def forward(self, features, **kwargs): | |
x = features[:, 0, :] # take <s> token (equiv. to [CLS]) | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = torch.tanh(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
class RobertaClassificationHead(nn.Module): | |
"""Head for sentence-level classification tasks.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, features, **kwargs): | |
x = features[:, 0, :] # take <s> token (equiv. to [CLS]) | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = torch.tanh(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
class RobertaForQuestionAnswering(BertPreTrainedModel): | |
config_class = RobertaConfig | |
pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP | |
base_model_prefix = "roberta" | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.roberta = RobertaModel(config) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
start_positions=None, | |
end_positions=None, | |
): | |
r""" | |
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). | |
Position outside of the sequence are not taken into account for computing the loss. | |
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). | |
Position outside of the sequence are not taken into account for computing the loss. | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): | |
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. | |
start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`): | |
Span-start scores (before SoftMax). | |
end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`): | |
Span-end scores (before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
# The checkpoint roberta-large is not fine-tuned for question answering. Please see the | |
# examples/run_squad.py example to see how to fine-tune a model to a question answering task. | |
from transformers import RobertaTokenizer, RobertaForQuestionAnswering | |
import torch | |
tokenizer = RobertaTokenizer.from_pretrained('roberta-base') | |
model = RobertaForQuestionAnswering.from_pretrained('roberta-base') | |
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" | |
input_ids = tokenizer.encode(question, text) | |
start_scores, end_scores = model(torch.tensor([input_ids])) | |
all_tokens = tokenizer.convert_ids_to_tokens(input_ids) | |
answer = ' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1]) | |
""" | |
outputs = self.roberta( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1) | |
end_logits = end_logits.squeeze(-1) | |
outputs = (start_logits, end_logits,) + outputs[2:] | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions.clamp_(0, ignored_index) | |
end_positions.clamp_(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
outputs = (total_loss,) + outputs | |
return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions) | |