Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2010, The T5 Authors and HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" T5 model configuration """ | |
import logging | |
from .configuration_utils import PretrainedConfig | |
logger = logging.getLogger(__name__) | |
T5_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"t5-small": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-small-config.json", | |
"t5-base": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-base-config.json", | |
"t5-large": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-large-config.json", | |
"t5-3b": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-3b-config.json", | |
"t5-11b": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-11b-config.json", | |
} | |
class T5Config(PretrainedConfig): | |
r""" | |
:class:`~transformers.T5Config` is the configuration class to store the configuration of a | |
`T5Model`. | |
Arguments: | |
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `T5Model`. | |
hidden_size: Size of the encoder layers and the pooler layer. | |
num_hidden_layers: Number of hidden layers in the Transformer encoder. | |
num_attention_heads: Number of attention heads for each attention layer in | |
the Transformer encoder. | |
intermediate_size: The size of the "intermediate" (i.e., feed-forward) | |
layer in the Transformer encoder. | |
hidden_act: The non-linear activation function (function or string) in the | |
encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported. | |
hidden_dropout_prob: The dropout probabilitiy for all fully connected | |
layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob: The dropout ratio for the attention | |
probabilities. | |
max_position_embeddings: The maximum sequence length that this model might | |
ever be used with. Typically set this to something large just in case | |
(e.g., 512 or 1024 or 2048). | |
type_vocab_size: The vocabulary size of the `token_type_ids` passed into | |
`T5Model`. | |
initializer_factor: A factor for initializing all weight matrices (should be kept to 1.0, used for initialization testing). | |
layer_norm_eps: The epsilon used by LayerNorm. | |
""" | |
pretrained_config_archive_map = T5_PRETRAINED_CONFIG_ARCHIVE_MAP | |
model_type = "t5" | |
def __init__( | |
self, | |
vocab_size=32128, | |
n_positions=512, | |
d_model=512, | |
d_kv=64, | |
d_ff=2048, | |
num_layers=6, | |
num_heads=8, | |
relative_attention_num_buckets=32, | |
dropout_rate=0.1, | |
layer_norm_epsilon=1e-6, | |
initializer_factor=1.0, | |
**kwargs | |
): | |
super().__init__(**kwargs) | |
self.vocab_size = vocab_size | |
self.n_positions = n_positions | |
self.d_model = d_model | |
self.d_kv = d_kv | |
self.d_ff = d_ff | |
self.num_layers = num_layers | |
self.num_heads = num_heads | |
self.relative_attention_num_buckets = relative_attention_num_buckets | |
self.dropout_rate = dropout_rate | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_factor = initializer_factor | |
def max_position_embeddings(self): | |
return self.n_positions | |
def hidden_size(self): | |
return self.d_model | |
def num_attention_heads(self): | |
return self.num_heads | |
def num_hidden_layers(self): | |
return self.num_layers | |