Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" DistilBERT model configuration """ | |
import logging | |
from .configuration_utils import PretrainedConfig | |
logger = logging.getLogger(__name__) | |
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"distilbert-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-config.json", | |
"distilbert-base-uncased-distilled-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-distilled-squad-config.json", | |
"distilbert-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-cased-config.json", | |
"distilbert-base-cased-distilled-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-cased-distilled-squad-config.json", | |
"distilbert-base-german-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-german-cased-config.json", | |
"distilbert-base-multilingual-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-multilingual-cased-config.json", | |
"distilbert-base-uncased-finetuned-sst-2-english": "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-finetuned-sst-2-english-config.json", | |
} | |
class DistilBertConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a :class:`~transformers.DistilBertModel`. | |
It is used to instantiate a DistilBERT model according to the specified arguments, defining the model | |
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of | |
the DistilBERT `distilbert-base-uncased <https://huggingface.co/distilbert-base-uncased>`__ architecture. | |
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used | |
to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` | |
for more information. | |
Args: | |
vocab_size (:obj:`int`, optional, defaults to 30522): | |
Vocabulary size of the DistilBERT model. Defines the different tokens that | |
can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.BertModel`. | |
max_position_embeddings (:obj:`int`, optional, defaults to 512): | |
The maximum sequence length that this model might ever be used with. | |
Typically set this to something large just in case (e.g., 512 or 1024 or 2048). | |
sinusoidal_pos_embds (:obj:`boolean`, optional, defaults to :obj:`False`): | |
Whether to use sinusoidal positional embeddings. | |
n_layers (:obj:`int`, optional, defaults to 6): | |
Number of hidden layers in the Transformer encoder. | |
n_heads (:obj:`int`, optional, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
dim (:obj:`int`, optional, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
hidden_dim (:obj:`int`, optional, defaults to 3072): | |
The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
dropout (:obj:`float`, optional, defaults to 0.1): | |
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_dropout (:obj:`float`, optional, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
activation (:obj:`str` or :obj:`function`, optional, defaults to "gelu"): | |
The non-linear activation function (function or string) in the encoder and pooler. | |
If string, "gelu", "relu", "swish" and "gelu_new" are supported. | |
initializer_range (:obj:`float`, optional, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
qa_dropout (:obj:`float`, optional, defaults to 0.1): | |
The dropout probabilities used in the question answering model | |
:class:`~tranformers.DistilBertForQuestionAnswering`. | |
seq_classif_dropout (:obj:`float`, optional, defaults to 0.2): | |
The dropout probabilities used in the sequence classification model | |
:class:`~tranformers.DistilBertForSequenceClassification`. | |
Example:: | |
from transformers import DistilBertModel, DistilBertConfig | |
# Initializing a DistilBERT configuration | |
configuration = DistilBertConfig() | |
# Initializing a model from the configuration | |
model = DistilBertModel(configuration) | |
# Accessing the model configuration | |
configuration = model.config | |
Attributes: | |
pretrained_config_archive_map (Dict[str, str]): | |
A dictionary containing all the available pre-trained checkpoints. | |
""" | |
pretrained_config_archive_map = DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP | |
model_type = "distilbert" | |
def __init__( | |
self, | |
vocab_size=30522, | |
max_position_embeddings=512, | |
sinusoidal_pos_embds=False, | |
n_layers=6, | |
n_heads=12, | |
dim=768, | |
hidden_dim=4 * 768, | |
dropout=0.1, | |
attention_dropout=0.1, | |
activation="gelu", | |
initializer_range=0.02, | |
qa_dropout=0.1, | |
seq_classif_dropout=0.2, | |
**kwargs | |
): | |
super().__init__(**kwargs) | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.sinusoidal_pos_embds = sinusoidal_pos_embds | |
self.n_layers = n_layers | |
self.n_heads = n_heads | |
self.dim = dim | |
self.hidden_dim = hidden_dim | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.activation = activation | |
self.initializer_range = initializer_range | |
self.qa_dropout = qa_dropout | |
self.seq_classif_dropout = seq_classif_dropout | |
def hidden_size(self): | |
return self.dim | |
def num_attention_heads(self): | |
return self.n_heads | |
def num_hidden_layers(self): | |
return self.n_layers | |