Spaces:
Sleeping
Sleeping
# flake8: noqa | |
# There's no way to ignore "F401 '...' imported but unused" warnings in this | |
# module, but to preserve other warnings. So, don't check this module at all. | |
__version__ = "2.5.1" | |
# Work around to update TensorFlow's absl.logging threshold which alters the | |
# default Python logging output behavior when present. | |
# see: https://github.com/abseil/abseil-py/issues/99 | |
# and: https://github.com/tensorflow/tensorflow/issues/26691#issuecomment-500369493 | |
try: | |
import absl.logging | |
except ImportError: | |
pass | |
else: | |
absl.logging.set_verbosity("info") | |
absl.logging.set_stderrthreshold("info") | |
absl.logging._warn_preinit_stderr = False | |
import logging | |
from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig | |
from .configuration_auto import ALL_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoConfig | |
from .configuration_bart import BartConfig | |
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig | |
from .configuration_camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig | |
from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig | |
from .configuration_distilbert import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig | |
from .configuration_flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig | |
from .configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config | |
from .configuration_mmbt import MMBTConfig | |
from .configuration_openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig | |
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig | |
from .configuration_t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config | |
from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig | |
# Configurations | |
from .configuration_utils import PretrainedConfig | |
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig | |
from .configuration_xlm_roberta import XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig | |
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig | |
from .data import ( | |
DataProcessor, | |
InputExample, | |
InputFeatures, | |
SingleSentenceClassificationProcessor, | |
SquadExample, | |
SquadFeatures, | |
SquadV1Processor, | |
SquadV2Processor, | |
xtreme_convert_examples_to_features, | |
xtreme_output_modes, | |
xtreme_processors, | |
xtreme_tasks_num_labels, | |
xglue_convert_examples_to_features, | |
xglue_output_modes, | |
xglue_processors, | |
xglue_tasks_num_labels, | |
glue_convert_examples_to_features, | |
glue_output_modes, | |
glue_processors, | |
glue_tasks_num_labels, | |
is_sklearn_available, | |
squad_convert_examples_to_features, | |
xnli_output_modes, | |
xnli_processors, | |
xnli_tasks_num_labels, | |
) | |
# Files and general utilities | |
from .file_utils import ( | |
CONFIG_NAME, | |
MODEL_CARD_NAME, | |
PYTORCH_PRETRAINED_BERT_CACHE, | |
PYTORCH_TRANSFORMERS_CACHE, | |
TF2_WEIGHTS_NAME, | |
TF_WEIGHTS_NAME, | |
TRANSFORMERS_CACHE, | |
WEIGHTS_NAME, | |
add_end_docstrings, | |
add_start_docstrings, | |
cached_path, | |
is_tf_available, | |
is_torch_available, | |
) | |
# Model Cards | |
from .modelcard import ModelCard | |
# TF 2.0 <=> PyTorch conversion utilities | |
from .modeling_tf_pytorch_utils import ( | |
convert_tf_weight_name_to_pt_weight_name, | |
load_pytorch_checkpoint_in_tf2_model, | |
load_pytorch_model_in_tf2_model, | |
load_pytorch_weights_in_tf2_model, | |
load_tf2_checkpoint_in_pytorch_model, | |
load_tf2_model_in_pytorch_model, | |
load_tf2_weights_in_pytorch_model, | |
) | |
# Pipelines | |
from .pipelines import ( | |
CsvPipelineDataFormat, | |
FeatureExtractionPipeline, | |
FillMaskPipeline, | |
JsonPipelineDataFormat, | |
NerPipeline, | |
PipedPipelineDataFormat, | |
Pipeline, | |
PipelineDataFormat, | |
QuestionAnsweringPipeline, | |
TextClassificationPipeline, | |
TokenClassificationPipeline, | |
pipeline, | |
) | |
from .tokenization_albert import AlbertTokenizer | |
from .tokenization_auto import AutoTokenizer | |
from .tokenization_bart import BartTokenizer | |
from .tokenization_bert import BasicTokenizer, BertTokenizer, BertTokenizerFast, WordpieceTokenizer | |
from .tokenization_bert_japanese import BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer | |
from .tokenization_camembert import CamembertTokenizer | |
from .tokenization_ctrl import CTRLTokenizer | |
from .tokenization_distilbert import DistilBertTokenizer, DistilBertTokenizerFast | |
from .tokenization_flaubert import FlaubertTokenizer | |
from .tokenization_gpt2 import GPT2Tokenizer, GPT2TokenizerFast | |
from .tokenization_openai import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast | |
from .tokenization_roberta import RobertaTokenizer, RobertaTokenizerFast | |
from .tokenization_t5 import T5Tokenizer | |
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer, TransfoXLTokenizerFast | |
# Tokenizers | |
from .tokenization_utils import PreTrainedTokenizer | |
from .tokenization_xlm import XLMTokenizer | |
from .tokenization_xlm_roberta import XLMRobertaTokenizer | |
from .tokenization_xlnet import SPIECE_UNDERLINE, XLNetTokenizer | |
logger = logging.getLogger(__name__) # pylint: disable=invalid-name | |
if is_sklearn_available(): | |
from .data import glue_compute_metrics, xnli_compute_metrics, xglue_compute_metrics, xtreme_compute_metrics | |
# Modeling | |
if is_torch_available(): | |
from .modeling_utils import PreTrainedModel, prune_layer, Conv1D, top_k_top_p_filtering | |
from .modeling_auto import ( | |
AutoModel, | |
AutoModelForPreTraining, | |
AutoModelForSequenceClassification, | |
AutoModelForQuestionAnswering, | |
AutoModelWithLMHead, | |
AutoModelForTokenClassification, | |
ALL_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_bert import ( | |
BertPreTrainedModel, | |
BertModel, | |
BertForPreTraining, | |
BertForMaskedLM, | |
BertForNextSentencePrediction, | |
BertForMultiTaskSequenceClassification, | |
BertForSequenceClassification, | |
BertForMultipleChoice, | |
BertForTokenClassification, | |
BertForQuestionAnswering, | |
load_tf_weights_in_bert, | |
BERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_openai import ( | |
OpenAIGPTPreTrainedModel, | |
OpenAIGPTModel, | |
OpenAIGPTLMHeadModel, | |
OpenAIGPTDoubleHeadsModel, | |
load_tf_weights_in_openai_gpt, | |
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_transfo_xl import ( | |
TransfoXLPreTrainedModel, | |
TransfoXLModel, | |
TransfoXLLMHeadModel, | |
AdaptiveEmbedding, | |
load_tf_weights_in_transfo_xl, | |
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_gpt2 import ( | |
GPT2PreTrainedModel, | |
GPT2Model, | |
GPT2LMHeadModel, | |
GPT2DoubleHeadsModel, | |
load_tf_weights_in_gpt2, | |
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_ctrl import CTRLPreTrainedModel, CTRLModel, CTRLLMHeadModel, CTRL_PRETRAINED_MODEL_ARCHIVE_MAP | |
from .modeling_xlnet import ( | |
XLNetPreTrainedModel, | |
XLNetModel, | |
XLNetLMHeadModel, | |
XLNetForSequenceClassification, | |
XLNetForTokenClassification, | |
XLNetForMultipleChoice, | |
XLNetForQuestionAnsweringSimple, | |
XLNetForQuestionAnswering, | |
load_tf_weights_in_xlnet, | |
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_xlm import ( | |
XLMPreTrainedModel, | |
XLMModel, | |
XLMWithLMHeadModel, | |
XLMForSequenceClassification, | |
XLMForQuestionAnswering, | |
XLMForQuestionAnsweringSimple, | |
XLM_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_bart import BartForSequenceClassification, BartModel, BartForMaskedLM | |
from .modeling_roberta import ( | |
RobertaForMaskedLM, | |
RobertaModel, | |
RobertaForSequenceClassification, | |
RobertaForMultiTaskSequenceClassification, | |
RobertaForMultipleChoice, | |
RobertaForTokenClassification, | |
RobertaForQuestionAnswering, | |
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_camembert import ( | |
CamembertForMaskedLM, | |
CamembertModel, | |
CamembertForSequenceClassification, | |
CamembertForTokenClassification, | |
CamembertForQuestionAnswering, | |
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_distilbert import ( | |
DistilBertPreTrainedModel, | |
DistilBertForMaskedLM, | |
DistilBertModel, | |
DistilBertForSequenceClassification, | |
DistilBertForQuestionAnswering, | |
DistilBertForTokenClassification, | |
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_camembert import ( | |
CamembertForMaskedLM, | |
CamembertModel, | |
CamembertForSequenceClassification, | |
CamembertForMultipleChoice, | |
CamembertForTokenClassification, | |
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_encoder_decoder import PreTrainedEncoderDecoder | |
from .modeling_t5 import ( | |
T5PreTrainedModel, | |
T5Model, | |
T5WithLMHeadModel, | |
load_tf_weights_in_t5, | |
T5_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_albert import ( | |
AlbertPreTrainedModel, | |
AlbertModel, | |
AlbertForMaskedLM, | |
AlbertForSequenceClassification, | |
AlbertForQuestionAnswering, | |
AlbertForTokenClassification, | |
load_tf_weights_in_albert, | |
ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_xlm_roberta import ( | |
XLMRobertaForMaskedLM, | |
XLMRobertaModel, | |
XLMRobertaForRetrieval, | |
XLMRobertaForMultipleChoice, | |
XLMRobertaForSequenceClassification, | |
XLMRobertaForSequenceClassificationStable, | |
XLMRobertaForSequenceClassificationConsistency, | |
XLMRobertaForMultiTaskSequenceClassification, | |
XLMRobertaForTokenClassification, | |
XLMRobertaForTokenClassificationPoolingStable, | |
XLMRobertaForQuestionAnswering, | |
XLMRobertaForQuestionAnsweringStable, | |
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_mmbt import ModalEmbeddings, MMBTModel, MMBTForClassification | |
from .modeling_flaubert import ( | |
FlaubertModel, | |
FlaubertWithLMHeadModel, | |
FlaubertForSequenceClassification, | |
FlaubertForQuestionAnswering, | |
FlaubertForQuestionAnsweringSimple, | |
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
# Optimization | |
from .optimization import ( | |
AdamW, | |
get_constant_schedule, | |
get_constant_schedule_with_warmup, | |
get_cosine_schedule_with_warmup, | |
get_cosine_with_hard_restarts_schedule_with_warmup, | |
get_linear_schedule_with_warmup, | |
) | |
# TensorFlow | |
if is_tf_available(): | |
from .modeling_tf_utils import ( | |
TFPreTrainedModel, | |
TFSharedEmbeddings, | |
TFSequenceSummary, | |
shape_list, | |
tf_top_k_top_p_filtering, | |
) | |
from .modeling_tf_auto import ( | |
TFAutoModel, | |
TFAutoModelForPreTraining, | |
TFAutoModelForSequenceClassification, | |
TFAutoModelForQuestionAnswering, | |
TFAutoModelWithLMHead, | |
TFAutoModelForTokenClassification, | |
TF_ALL_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_tf_bert import ( | |
TFBertPreTrainedModel, | |
TFBertMainLayer, | |
TFBertEmbeddings, | |
TFBertModel, | |
TFBertForPreTraining, | |
TFBertForMaskedLM, | |
TFBertForNextSentencePrediction, | |
TFBertForSequenceClassification, | |
TFBertForMultipleChoice, | |
TFBertForTokenClassification, | |
TFBertForQuestionAnswering, | |
TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_tf_gpt2 import ( | |
TFGPT2PreTrainedModel, | |
TFGPT2MainLayer, | |
TFGPT2Model, | |
TFGPT2LMHeadModel, | |
TFGPT2DoubleHeadsModel, | |
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_tf_openai import ( | |
TFOpenAIGPTPreTrainedModel, | |
TFOpenAIGPTMainLayer, | |
TFOpenAIGPTModel, | |
TFOpenAIGPTLMHeadModel, | |
TFOpenAIGPTDoubleHeadsModel, | |
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_tf_transfo_xl import ( | |
TFTransfoXLPreTrainedModel, | |
TFTransfoXLMainLayer, | |
TFTransfoXLModel, | |
TFTransfoXLLMHeadModel, | |
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_tf_xlnet import ( | |
TFXLNetPreTrainedModel, | |
TFXLNetMainLayer, | |
TFXLNetModel, | |
TFXLNetLMHeadModel, | |
TFXLNetForSequenceClassification, | |
TFXLNetForTokenClassification, | |
TFXLNetForQuestionAnsweringSimple, | |
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_tf_xlm import ( | |
TFXLMPreTrainedModel, | |
TFXLMMainLayer, | |
TFXLMModel, | |
TFXLMWithLMHeadModel, | |
TFXLMForSequenceClassification, | |
TFXLMForQuestionAnsweringSimple, | |
TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_tf_xlm_roberta import ( | |
TFXLMRobertaForMaskedLM, | |
TFXLMRobertaModel, | |
TFXLMRobertaForSequenceClassification, | |
TFXLMRobertaForTokenClassification, | |
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_tf_roberta import ( | |
TFRobertaPreTrainedModel, | |
TFRobertaMainLayer, | |
TFRobertaModel, | |
TFRobertaForMaskedLM, | |
TFRobertaForSequenceClassification, | |
TFRobertaForTokenClassification, | |
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_tf_camembert import ( | |
TFCamembertModel, | |
TFCamembertForMaskedLM, | |
TFCamembertForSequenceClassification, | |
TFCamembertForTokenClassification, | |
TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_tf_distilbert import ( | |
TFDistilBertPreTrainedModel, | |
TFDistilBertMainLayer, | |
TFDistilBertModel, | |
TFDistilBertForMaskedLM, | |
TFDistilBertForSequenceClassification, | |
TFDistilBertForTokenClassification, | |
TFDistilBertForQuestionAnswering, | |
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_tf_ctrl import ( | |
TFCTRLPreTrainedModel, | |
TFCTRLModel, | |
TFCTRLLMHeadModel, | |
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_tf_albert import ( | |
TFAlbertPreTrainedModel, | |
TFAlbertModel, | |
TFAlbertForMaskedLM, | |
TFAlbertForSequenceClassification, | |
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
from .modeling_tf_t5 import ( | |
TFT5PreTrainedModel, | |
TFT5Model, | |
TFT5WithLMHeadModel, | |
TF_T5_PRETRAINED_MODEL_ARCHIVE_MAP, | |
) | |
# Optimization | |
from .optimization_tf import WarmUp, create_optimizer, AdamWeightDecay, GradientAccumulator | |
if not is_tf_available() and not is_torch_available(): | |
logger.warning( | |
"Neither PyTorch nor TensorFlow >= 2.0 have been found." | |
"Models won't be available and only tokenizers, configuration" | |
"and file/data utilities can be used." | |
) | |