Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Finetuning multi-lingual models on classification (Bert, DistilBERT, XLM, XLM-R). Adapted from `examples/run_glue.py`""" | |
import argparse | |
import glob | |
import logging | |
import os | |
import random | |
import json | |
import copy | |
import math | |
import numpy as np | |
import torch | |
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset, ConcatDataset, Subset | |
from torch.utils.data.distributed import DistributedSampler | |
from tqdm import tqdm, trange | |
from transformers import ( | |
WEIGHTS_NAME, | |
AdamW, | |
BertConfig, | |
BertForSequenceClassification, | |
BertTokenizer, | |
DistilBertConfig, | |
DistilBertForSequenceClassification, | |
DistilBertTokenizer, | |
XLMConfig, | |
XLMForSequenceClassification, | |
XLMTokenizer, | |
XLMRobertaConfig, | |
XLMRobertaForSequenceClassificationStable, | |
XLMRobertaTokenizer, | |
get_linear_schedule_with_warmup, | |
) | |
from transformers import xtreme_convert_examples_to_features as convert_examples_to_features | |
from transformers import xtreme_compute_metrics as compute_metrics | |
from transformers import xtreme_output_modes as output_modes | |
from transformers import xtreme_processors as processors | |
try: | |
from torch.utils.tensorboard import SummaryWriter | |
except ImportError: | |
from tensorboardX import SummaryWriter | |
logger = logging.getLogger(__name__) | |
ALL_MODELS = sum( | |
(tuple(conf.pretrained_config_archive_map.keys()) for conf in | |
(BertConfig, DistilBertConfig, XLMConfig, XLMRobertaConfig)), () | |
) | |
MODEL_CLASSES = { | |
"bert": (BertConfig, BertForSequenceClassification, BertTokenizer), | |
"xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer), | |
"distilbert": (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer), | |
"xlmr": (XLMRobertaConfig, XLMRobertaForSequenceClassificationStable, XLMRobertaTokenizer) | |
} | |
class NoisedDataGenerator(object): | |
def __init__(self, | |
task_name="xnli", | |
enable_r1_loss=False, | |
r1_lambda=5.0, | |
original_loss=True, | |
noised_loss=False, | |
max_length=512, | |
overall_ratio=1.0, | |
enable_bpe_switch=False, | |
bpe_switch_ratio=0.5, | |
tokenizer_dir=None, | |
do_lower_case=False, | |
tokenizer_languages=None, | |
enable_bpe_sampling=False, | |
tokenizer=None, | |
bpe_sampling_ratio=0.5, | |
sampling_alpha=0.3, | |
sampling_nbest_size=-1, | |
enable_random_noise=False, | |
noise_detach_embeds=False, | |
noise_eps=1e-5, | |
noise_type='uniform', | |
enable_code_switch=False, | |
code_switch_ratio=0.5, | |
dict_dir=None, | |
dict_languages=None, | |
enable_word_dropout=False, | |
word_dropout_rate=0.1, | |
enable_translate_data=False, | |
translation_path=None, | |
train_language=None, | |
data_dir=None, | |
translate_different_pair=False, | |
translate_en_data=False, | |
enable_data_augmentation=False, | |
augment_method=None, | |
augment_ratio=0.0, | |
r2_lambda=1.0, | |
use_hard_labels=False): | |
if enable_code_switch: | |
assert dict_dir is not None | |
assert dict_languages is not None | |
assert tokenizer is not None | |
if enable_random_noise: | |
assert noise_type in ['uniform', 'normal'] | |
self.task_name = task_name | |
self.n_tokens = 0 | |
self.n_cs_tokens = 0 | |
self.enable_r1_loss = enable_r1_loss | |
self.r1_lambda = r1_lambda | |
self.original_loss = original_loss | |
self.noised_loss = noised_loss | |
self.max_length = max_length | |
self.overall_ratio = overall_ratio | |
self.enable_bpe_switch = enable_bpe_switch | |
self.bpe_switch_ratio = bpe_switch_ratio / self.overall_ratio | |
assert self.bpe_switch_ratio <= 1.0 | |
self.tokenizer_dir = tokenizer_dir | |
self.tokenizer_languages = tokenizer_languages | |
self.enable_bpe_sampling = enable_bpe_sampling | |
self.bpe_sampling_ratio = bpe_sampling_ratio / self.overall_ratio | |
assert self.bpe_sampling_ratio <= 1.0 | |
self.tokenizer = tokenizer | |
self.sampling_alpha = sampling_alpha | |
self.sampling_nbest_size = sampling_nbest_size | |
self.enable_random_noise = enable_random_noise | |
self.noise_detach_embeds = noise_detach_embeds | |
self.noise_eps = noise_eps | |
self.noise_type = noise_type | |
self.enable_word_dropout = enable_word_dropout | |
self.word_dropout_rate = word_dropout_rate | |
self.enable_translate_data = enable_translate_data | |
self.train_languages = train_language.split(',') | |
self.data_dir = data_dir | |
self.translate_different_pair = translate_different_pair | |
self.translate_en_data = translate_en_data | |
if "en" in self.train_languages: | |
self.train_languages.remove("en") | |
self.translate_train_dicts = [] | |
self.tgt2src_dict = {} | |
self.tgt2src_cnt = {} | |
self.translation_path = translation_path | |
self.enable_code_switch = enable_code_switch | |
self.code_switch_ratio = code_switch_ratio / self.overall_ratio | |
assert self.code_switch_ratio <= 1.0 | |
self.dict_dir = dict_dir | |
self.dict_languages = dict_languages | |
self.lang2dict = {} | |
for lang in copy.deepcopy(dict_languages): | |
dict_path = os.path.join(self.dict_dir, "en-{}.txt".format(lang)) | |
if not os.path.exists(dict_path): | |
logger.info("dictionary en-{} doesn't exist.".format(lang)) | |
self.dict_languages.remove(lang) | |
continue | |
logger.info("reading dictionary from {}".format(dict_path)) | |
assert os.path.exists(dict_path) | |
with open(dict_path, "r", encoding="utf-8") as reader: | |
raw = reader.readlines() | |
self.lang2dict[lang] = {} | |
for line in raw: | |
line = line.strip() | |
try: | |
src, tgt = line.split("\t") | |
except: | |
src, tgt = line.split(" ") | |
if src not in self.lang2dict[lang]: | |
self.lang2dict[lang][src] = [tgt] | |
else: | |
self.lang2dict[lang][src].append(tgt) | |
self.lang2tokenizer = {} | |
for lang in tokenizer_languages: | |
self.lang2tokenizer[lang] = XLMRobertaTokenizer.from_pretrained( | |
os.path.join(tokenizer_dir, "{}".format(lang)), do_lower_case=do_lower_case) | |
self.enable_data_augmentation = enable_data_augmentation | |
self.augment_method = augment_method | |
self.augment_ratio = augment_ratio | |
self.r2_lambda = r2_lambda | |
self.use_hard_labels = use_hard_labels | |
def augment_examples(self, examples): | |
n_augment = math.ceil(len(examples) * self.augment_ratio) | |
augment_examples = [] | |
while n_augment > 0: | |
examples = copy.deepcopy(examples) | |
augment_examples += examples[:n_augment] | |
n_augment -= len(examples[:n_augment]) | |
random.shuffle(examples) | |
return augment_examples | |
def get_noised_dataset(self, examples): | |
# maybe do not save augmented examples | |
examples = copy.deepcopy(examples) | |
if (self.enable_data_augmentation and self.augment_method == "mt") or self.enable_translate_data: | |
self.load_translate_data() | |
is_augmented = [0] * len(examples) | |
if self.enable_data_augmentation: | |
augment_examples = self.augment_examples(examples) | |
is_augmented += [1] * len(augment_examples) | |
examples += augment_examples | |
if self.enable_code_switch: | |
self.n_tokens = 0 | |
self.n_cs_tokens = 0 | |
dataset = self.convert_examples_to_dataset(examples, is_augmented) | |
if self.enable_code_switch: | |
logger.info("{:.2f}% tokens have been code-switched.".format(self.n_cs_tokens / self.n_tokens * 100)) | |
return dataset | |
def encode_sentence(self, text, switch_text=False, enable_code_switch=False, enable_bpe_switch=False, | |
enable_bpe_sampling=False, enable_word_dropout=False, ): | |
if text is None: | |
return None | |
ids = [] | |
tokens = text.split(" ") | |
for token in tokens: | |
switch_token = random.random() <= self.overall_ratio | |
self.n_tokens += 1 | |
if enable_code_switch and switch_text and switch_token and random.random() <= self.code_switch_ratio: | |
lang = self.dict_languages[random.randint(0, len(self.dict_languages) - 1)] | |
if token.lower() in self.lang2dict[lang]: | |
self.n_cs_tokens += 1 | |
token = self.lang2dict[lang][token.lower()][ | |
random.randint(0, len(self.lang2dict[lang][token.lower()]) - 1)] | |
if enable_bpe_switch and switch_text and switch_token and random.random() <= self.bpe_switch_ratio: | |
lang = self.tokenizer_languages[random.randint(0, len(self.tokenizer_languages) - 1)] | |
tokenizer = self.lang2tokenizer[lang] | |
else: | |
tokenizer = self.tokenizer | |
if enable_bpe_sampling and switch_text and switch_token and random.random() <= self.bpe_sampling_ratio: | |
token_ids = tokenizer.encode_plus(token, add_special_tokens=True, | |
nbest_size=self.sampling_nbest_size, | |
alpha=self.sampling_alpha)["input_ids"] | |
else: | |
token_ids = tokenizer.encode_plus(token, add_special_tokens=True)["input_ids"] | |
if enable_word_dropout: | |
for token_id in token_ids[1:-1]: | |
if random.random() <= self.word_dropout_rate: | |
ids += [tokenizer.unk_token_id] | |
else: | |
ids += [token_id] | |
else: | |
ids += token_ids[1:-1] | |
return ids | |
def encode_plus(self, text_a, text_b, switch_text=False, enable_code_switch=False, enable_bpe_switch=False, | |
enable_bpe_sampling=False, enable_word_dropout=False, ): | |
# switch all sentences | |
ids = self.encode_sentence(text_a, switch_text, enable_code_switch, enable_bpe_switch, enable_bpe_sampling, | |
enable_word_dropout) | |
pair_ids = self.encode_sentence(text_b, switch_text, enable_code_switch, enable_bpe_switch, enable_bpe_sampling, | |
enable_word_dropout) | |
pair = bool(pair_ids is not None) | |
len_ids = len(ids) | |
len_pair_ids = len(pair_ids) if pair else 0 | |
encoded_inputs = {} | |
# Handle max sequence length | |
total_len = len_ids + len_pair_ids + (self.tokenizer.num_added_tokens(pair=pair)) | |
if self.max_length and total_len > self.max_length: | |
ids, pair_ids, overflowing_tokens = self.tokenizer.truncate_sequences( | |
ids, | |
pair_ids=pair_ids, | |
num_tokens_to_remove=total_len - self.max_length, | |
truncation_strategy="longest_first", | |
stride=0, | |
) | |
# Handle special_tokens | |
sequence = self.tokenizer.build_inputs_with_special_tokens(ids, pair_ids) | |
token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(ids, pair_ids) | |
encoded_inputs["input_ids"] = sequence | |
encoded_inputs["token_type_ids"] = token_type_ids | |
return encoded_inputs | |
def convert_examples_to_dataset( | |
self, | |
examples, | |
is_augmented=None, | |
pad_on_left=False, | |
pad_token=0, | |
pad_token_segment_id=0, | |
mask_padding_with_zero=True | |
): | |
processor = processors[self.task_name](language="en", train_language="en") | |
label_list = processor.get_labels() | |
logger.info("Using label list %s for task %s" % (label_list, self.task_name)) | |
label_map = {label: i for i, label in enumerate(label_list)} | |
output_mode = output_modes[self.task_name] | |
logger.info("Using output mode %s for task %s" % (output_mode, self.task_name)) | |
all_original_input_ids = [] | |
all_original_attention_mask = [] | |
all_original_token_type_ids = [] | |
all_labels = [] | |
all_noised_input_ids = [] | |
all_noised_attention_mask = [] | |
all_noised_token_type_ids = [] | |
all_r1_mask = [] | |
all_is_augmented = [] | |
for (ex_index, example) in enumerate(examples): | |
len_examples = len(examples) | |
if ex_index % 10000 == 0: | |
logger.info("Writing example %d/%d" % (ex_index, len_examples)) | |
# if ex_index == 10000: break | |
if is_augmented[ex_index]: | |
if self.augment_method == "mt": | |
example.text_a, example.text_b = self.get_translation_pair(example.text_a, example.text_b) | |
original_inputs = self.encode_plus(example.text_a, example.text_b, switch_text=False) | |
all_r1_mask.append(1) | |
elif self.augment_method == "gn": | |
original_inputs = self.encode_plus(example.text_a, example.text_b, switch_text=False) | |
all_r1_mask.append(1) | |
elif self.augment_method == "cs": | |
original_inputs = self.encode_plus(example.text_a, example.text_b, switch_text=True, | |
enable_code_switch=True) | |
all_r1_mask.append(1) | |
elif self.augment_method == "ss": | |
original_inputs = self.encode_plus(example.text_a, example.text_b, switch_text=True, | |
enable_bpe_sampling=True) | |
all_r1_mask.append(1) | |
else: | |
assert False | |
else: | |
original_inputs = self.encode_plus(example.text_a, example.text_b, switch_text=False) | |
all_r1_mask.append(1) | |
all_is_augmented.append(is_augmented[ex_index]) | |
original_input_ids, original_token_type_ids = original_inputs["input_ids"], original_inputs[ | |
"token_type_ids"] | |
original_attention_mask = [1 if mask_padding_with_zero else 0] * len(original_input_ids) | |
original_padding_length = self.max_length - len(original_input_ids) | |
if pad_on_left: | |
original_input_ids = ([pad_token] * original_padding_length) + original_input_ids | |
original_attention_mask = ([0 if mask_padding_with_zero else 1] * original_padding_length) + \ | |
original_attention_mask | |
original_token_type_ids = ([pad_token_segment_id] * original_padding_length) + original_token_type_ids | |
else: | |
original_input_ids = original_input_ids + ([pad_token] * original_padding_length) | |
original_attention_mask = original_attention_mask + ( | |
[0 if mask_padding_with_zero else 1] * original_padding_length) | |
original_token_type_ids = original_token_type_ids + ([pad_token_segment_id] * original_padding_length) | |
assert len(original_input_ids) == self.max_length, "Error with input length {} vs {}".format( | |
len(original_input_ids), self.max_length) | |
assert len(original_attention_mask) == self.max_length, "Error with input length {} vs {}".format( | |
len(original_attention_mask), self.max_length) | |
assert len(original_token_type_ids) == self.max_length, "Error with input length {} vs {}".format( | |
len(original_token_type_ids), self.max_length) | |
if output_mode == "classification": | |
label = label_map[example.label] | |
elif output_mode == "regression": | |
label = float(example.label) | |
else: | |
raise KeyError(output_mode) | |
if ex_index < 5: | |
logger.info("*** Example ***") | |
logger.info("guid: %s" % (example.guid)) | |
logger.info("original text a: %s" % (example.text_a)) | |
logger.info("original text b: %s" % (example.text_b)) | |
logger.info("original_input_ids: %s" % " ".join([str(x) for x in original_input_ids])) | |
logger.info("original_attention_mask: %s" % " ".join([str(x) for x in original_attention_mask])) | |
logger.info("original_token_type_ids: %s" % " ".join([str(x) for x in original_token_type_ids])) | |
logger.info("label: %s (id = %d)" % (example.label, label)) | |
all_original_input_ids.append(original_input_ids) | |
all_original_attention_mask.append(original_attention_mask) | |
all_original_token_type_ids.append(original_token_type_ids) | |
all_labels.append(label) | |
if not self.enable_r1_loss: | |
continue | |
if self.enable_translate_data: | |
noised_text_a, noised_text_b = self.get_translation_pair(example.text_a, example.text_b) | |
else: | |
noised_text_a, noised_text_b = example.text_a, example.text_b | |
noised_inputs = self.encode_plus(noised_text_a, noised_text_b, switch_text=True, | |
enable_code_switch=self.enable_code_switch, | |
enable_bpe_switch=self.enable_bpe_switch, | |
enable_bpe_sampling=self.enable_bpe_sampling, | |
enable_word_dropout=self.enable_word_dropout) | |
noised_input_ids, noised_token_type_ids = noised_inputs["input_ids"], noised_inputs["token_type_ids"] | |
# The mask has 1 for real tokens and 0 for padding tokens. Only real | |
# tokens are attended to. | |
noised_attention_mask = [1 if mask_padding_with_zero else 0] * len(noised_input_ids) | |
# Zero-pad up to the sequence length. | |
noised_padding_length = self.max_length - len(noised_input_ids) | |
if pad_on_left: | |
noised_input_ids = ([pad_token] * noised_padding_length) + noised_input_ids | |
noised_attention_mask = ([0 if mask_padding_with_zero else 1] * noised_padding_length) + \ | |
noised_attention_mask | |
noised_token_type_ids = ([pad_token_segment_id] * noised_padding_length) + noised_token_type_ids | |
else: | |
noised_input_ids = noised_input_ids + ([pad_token] * noised_padding_length) | |
noised_attention_mask = noised_attention_mask + ( | |
[0 if mask_padding_with_zero else 1] * noised_padding_length) | |
noised_token_type_ids = noised_token_type_ids + ([pad_token_segment_id] * noised_padding_length) | |
assert len(noised_input_ids) == self.max_length, "Error with input length {} vs {}".format( | |
len(noised_input_ids), self.max_length) | |
assert len(noised_attention_mask) == self.max_length, "Error with input length {} vs {}".format( | |
len(noised_attention_mask), self.max_length) | |
assert len(noised_token_type_ids) == self.max_length, "Error with input length {} vs {}".format( | |
len(noised_token_type_ids), self.max_length) | |
if ex_index < 5: | |
logger.info("*** Example ***") | |
logger.info("guid: %s" % (example.guid)) | |
logger.info("noised text a: %s" % (noised_text_a)) | |
logger.info("noised text b: %s" % (noised_text_b)) | |
logger.info("noised_input_ids: %s" % " ".join([str(x) for x in noised_input_ids])) | |
logger.info("noised_attention_mask: %s" % " ".join([str(x) for x in noised_attention_mask])) | |
logger.info("noised_token_type_ids: %s" % " ".join([str(x) for x in noised_token_type_ids])) | |
all_noised_input_ids.append(noised_input_ids) | |
all_noised_attention_mask.append(noised_attention_mask) | |
all_noised_token_type_ids.append(noised_token_type_ids) | |
all_original_input_ids = torch.tensor([input_ids for input_ids in all_original_input_ids], dtype=torch.long) | |
all_original_attention_mask = torch.tensor([attention_mask for attention_mask in all_original_attention_mask], | |
dtype=torch.long) | |
all_original_token_type_ids = torch.tensor([token_type_ids for token_type_ids in all_original_token_type_ids], | |
dtype=torch.long) | |
all_labels = torch.tensor([label for label in all_labels], dtype=torch.long) | |
is_augmented = torch.tensor([is_augmented for is_augmented in all_is_augmented], dtype=torch.long) | |
if self.enable_r1_loss: | |
all_noised_input_ids = torch.tensor([input_ids for input_ids in all_noised_input_ids], dtype=torch.long) | |
all_noised_attention_mask = torch.tensor([attention_mask for attention_mask in all_noised_attention_mask], | |
dtype=torch.long) | |
all_noised_token_type_ids = torch.tensor([token_type_ids for token_type_ids in all_noised_token_type_ids], | |
dtype=torch.long) | |
all_r1_mask = torch.tensor([r1_mask for r1_mask in all_r1_mask], | |
dtype=torch.long) | |
dataset = TensorDataset(all_original_input_ids, all_original_attention_mask, all_original_token_type_ids, | |
all_labels, is_augmented, all_noised_input_ids, all_noised_attention_mask, | |
all_noised_token_type_ids, all_r1_mask) | |
else: | |
dataset = TensorDataset(all_original_input_ids, all_original_attention_mask, all_original_token_type_ids, | |
all_labels, is_augmented) | |
return dataset | |
def get_translation_pair(self, text_a, text_b): | |
if text_a.strip() in self.tgt2src_dict and text_b.strip() in self.tgt2src_dict: | |
# tgt to {en, tgt} | |
en_text_a = self.tgt2src_dict[text_a.strip()] | |
en_text_b = self.tgt2src_dict[text_b.strip()] | |
lang_id_a = random.randint(0, len(self.train_languages) - 1) | |
if self.translate_different_pair: | |
lang_id_b = random.randint(0, len(self.train_languages) - 1) | |
else: | |
lang_id_b = lang_id_a | |
if text_a == self.translate_train_dicts[lang_id_a][en_text_a.strip()]: | |
text_a = en_text_a | |
else: | |
text_a = self.translate_train_dicts[lang_id_a][en_text_a.strip()] | |
if text_b == self.translate_train_dicts[lang_id_b][en_text_b.strip()]: | |
text_b = en_text_b | |
else: | |
text_b = self.translate_train_dicts[lang_id_b][en_text_b.strip()] | |
else: | |
# en to tgt | |
lang_id_a = random.randint(0, len(self.train_languages) - 1) | |
if self.translate_different_pair: | |
lang_id_b = random.randint(0, len(self.train_languages) - 1) | |
else: | |
lang_id_b = lang_id_a | |
assert text_a.strip() in self.translate_train_dicts[lang_id_a] | |
assert text_b.strip() in self.translate_train_dicts[lang_id_b] | |
text_a = self.translate_train_dicts[lang_id_a][text_a.strip()] | |
text_b = self.translate_train_dicts[lang_id_b][text_b.strip()] | |
return text_a, text_b | |
def load_translate_data(self): | |
self.translate_train_dicts = [] | |
self.tgt2src_dict = {} | |
self.tgt2src_cnt = {} | |
for i, language in enumerate(self.train_languages): | |
logger.info("reading training data from lang {}".format(language)) | |
processor = processors[self.task_name](language=language, train_language=language) | |
src2tgt_dict = processor.get_translate_train_dict(self.translation_path, self.tgt2src_dict, self.tgt2src_cnt) | |
self.translate_train_dicts.append(src2tgt_dict) | |
def get_train_steps(self, dataloader_size, args): | |
n_augment_batch = math.ceil(dataloader_size * (1 + self.augment_ratio)) | |
augment_steps = n_augment_batch // args.gradient_accumulation_steps | |
if args.max_steps > 0: | |
t_total = args.max_steps | |
assert False | |
else: | |
t_total = augment_steps * args.num_train_epochs | |
return t_total | |
def set_seed(args): | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
if args.n_gpu > 0: | |
torch.cuda.manual_seed_all(args.seed) | |
def ConcatDataset(dataset_list): | |
all_input_ids = torch.cat([dataset.tensors[0] for dataset in dataset_list], dim=0) | |
all_attention_mask = torch.cat([dataset.tensors[1] for dataset in dataset_list], dim=0) | |
all_token_type_ids = torch.cat([dataset.tensors[2] for dataset in dataset_list], dim=0) | |
all_labels = torch.cat([dataset.tensors[3] for dataset in dataset_list], dim=0) | |
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) | |
return dataset | |
def train(args, train_examples, train_dataset, model, first_stage_model, tokenizer, noised_data_generator=None): | |
""" Train the model """ | |
if args.local_rank in [-1, 0]: | |
tb_writer = SummaryWriter(os.path.join(args.output_dir, "tb-log")) | |
log_writer = open(os.path.join(args.output_dir, "evaluate_logs.txt"), 'w') | |
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) | |
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) | |
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) | |
if noised_data_generator is not None and noised_data_generator.enable_data_augmentation: | |
t_total = noised_data_generator.get_train_steps(len(train_dataloader), args) | |
else: | |
if args.max_steps > 0: | |
t_total = args.max_steps | |
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 | |
else: | |
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs | |
# Prepare optimizer and schedule (linear warmup and decay) | |
no_decay = ["bias", "LayerNorm.weight"] | |
optimizer_grouped_parameters = [ | |
{ | |
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], | |
"weight_decay": args.weight_decay, | |
}, | |
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, | |
] | |
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) | |
scheduler = get_linear_schedule_with_warmup( | |
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total | |
) | |
# Check if saved optimizer or scheduler states exist | |
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( | |
os.path.join(args.model_name_or_path, "scheduler.pt") | |
): | |
# Load in optimizer and scheduler states | |
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) | |
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
# multi-gpu training (should be after apex fp16 initialization) | |
if args.n_gpu > 1: | |
model = torch.nn.DataParallel(model) | |
# Distributed training (should be after apex fp16 initialization) | |
if args.local_rank != -1: | |
model = torch.nn.parallel.DistributedDataParallel( | |
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True | |
) | |
# Train! | |
logger.info("***** Running training *****") | |
logger.info(" Num examples = %d", len(train_dataset)) | |
logger.info(" Num Epochs = %d", args.num_train_epochs) | |
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) | |
logger.info( | |
" Total train batch size (w. parallel, distributed & accumulation) = %d", | |
args.train_batch_size | |
* args.gradient_accumulation_steps | |
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1), | |
) | |
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) | |
logger.info(" Total optimization steps = %d", t_total) | |
logger.info(" Logging steps = %d", args.logging_steps) | |
global_step = 0 | |
epochs_trained = 0 | |
steps_trained_in_current_epoch = 0 | |
# Check if continuing training from a checkpoint | |
if os.path.exists(args.model_name_or_path) and False: | |
# set global_step to gobal_step of last saved checkpoint from model path | |
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0]) | |
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) | |
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) | |
logger.info(" Continuing training from checkpoint, will skip to saved global_step") | |
logger.info(" Continuing training from epoch %d", epochs_trained) | |
logger.info(" Continuing training from global step %d", global_step) | |
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) | |
tr_loss, logging_loss, best_avg = 0.0, 0.0, 0.0 | |
tr_original_loss, logging_original_loss = 0.0, 0.0 | |
tr_noised_loss, logging_noised_loss = 0.0, 0.0 | |
tr_r1_loss, logging_r1_loss = 0.0, 0.0 | |
tr_r2_loss, logging_r2_loss = 0.0, 0.0 | |
model.zero_grad() | |
train_iterator = trange( | |
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] | |
) | |
set_seed(args) # Added here for reproductibility | |
def logging(eval=False): | |
results = None | |
if args.evaluate_during_training and eval: | |
results = evaluate(args, model, tokenizer, single_gpu=True) | |
for task, result in results.items(): | |
for key, value in result.items(): | |
tb_writer.add_scalar("eval_{}_{}".format(task, key), value, global_step) | |
logger.info("eval_%s_%s: %s" % (task, key, value)) | |
log_writer.write("{0}\t{1}\n".format(global_step, json.dumps(results))) | |
log_writer.flush() | |
logger.info( | |
"global_step: {}, lr: {:.6f}, loss: {:.6f}, original_loss: {:.6f}, noised_loss: {:.6f}, r1_loss: {:.6f}, r2_loss: {:.6f}".format( | |
global_step, scheduler.get_lr()[0], (tr_loss - logging_loss) / args.logging_steps, | |
(tr_original_loss - logging_original_loss) / args.logging_steps, | |
(tr_noised_loss - logging_noised_loss) / args.logging_steps, | |
(tr_r1_loss - logging_r1_loss) / args.logging_steps, | |
(tr_r2_loss - logging_r2_loss) / args.logging_steps)) | |
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) | |
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) | |
tb_writer.add_scalar("original_loss", (tr_original_loss - logging_original_loss) / args.logging_steps, | |
global_step) | |
tb_writer.add_scalar("noised_loss", (tr_noised_loss - logging_noised_loss) / args.logging_steps, global_step) | |
tb_writer.add_scalar("r1_loss", (tr_r1_loss - logging_r1_loss) / args.logging_steps, global_step) | |
tb_writer.add_scalar("r2_loss", (tr_r2_loss - logging_r2_loss) / args.logging_steps, global_step) | |
return results | |
def save_checkpoint_best(result): | |
task_metric = "acc" | |
if args.task_name == "rel": | |
task_metric = "ndcg" | |
if result is not None and best_avg < result["valid_avg"][task_metric]: | |
output_dir = os.path.join(args.output_dir, "checkpoint-best") | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
model_to_save = ( | |
model.module if hasattr(model, "module") else model | |
) # Take care of distributed/parallel training | |
model_to_save.save_pretrained(output_dir) | |
tokenizer.save_pretrained(output_dir) | |
torch.save(args, os.path.join(output_dir, "training_args.bin")) | |
logger.info("Saving model checkpoint to %s", output_dir) | |
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) | |
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) | |
logger.info("Saving optimizer and scheduler states to %s", output_dir) | |
return result["valid_avg"][task_metric] | |
else: | |
return best_avg | |
for _ in train_iterator: | |
if noised_data_generator is not None: | |
assert noised_data_generator.enable_r1_loss or noised_data_generator.noised_loss or noised_data_generator.enable_data_augmentation | |
noised_train_dataset = noised_data_generator.get_noised_dataset(train_examples) | |
train_sampler = RandomSampler(noised_train_dataset) if args.local_rank == -1 else DistributedSampler( | |
noised_train_dataset) | |
train_dataloader = DataLoader(noised_train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) | |
# if not args.max_steps > 0: | |
# assert t_total == len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs | |
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=True) | |
for step, batch in enumerate(epoch_iterator): | |
# Skip past any already trained steps if resuming training | |
if steps_trained_in_current_epoch > 0: | |
steps_trained_in_current_epoch -= 1 | |
continue | |
model.train() | |
if first_stage_model is not None: | |
first_stage_model.eval() | |
batch = tuple(t.to(args.device) for t in batch) | |
if len(batch) == 4: | |
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} | |
if args.model_type != "distilbert": | |
inputs["token_type_ids"] = ( | |
batch[2] if args.model_type in ["bert"] else None | |
) # XLM and DistilBERT don't use segment_ids | |
elif len(batch) == 5: | |
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} | |
if args.model_type != "distilbert": | |
inputs["token_type_ids"] = ( | |
batch[2] if args.model_type in ["bert"] else None | |
) # XLM and DistilBERT don't use segment_ids | |
inputs["is_augmented"] = batch[4] | |
else: | |
assert len(batch) == 9 | |
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], | |
"is_augmented": batch[4], | |
"noised_input_ids": batch[5], | |
"noised_attention_mask": batch[6], | |
"r1_mask": batch[8]} | |
if args.model_type != "distilbert": | |
inputs["token_type_ids"] = ( | |
batch[2] if args.model_type in ["bert"] else None | |
) # XLM and DistilBERT don't use segment_ids | |
inputs["noised_token_type_ids"] = ( | |
batch[7] if args.model_type in ["bert"] else None | |
) # XLM and DistilBERT don't use segment_ids | |
if first_stage_model is not None: | |
first_stage_model_inputs = {"input_ids": inputs["input_ids"], | |
"attention_mask": inputs["attention_mask"], | |
"token_type_ids": inputs["token_type_ids"], | |
"labels": inputs["labels"]} | |
with torch.no_grad(): | |
inputs["first_stage_model_logits"] = first_stage_model(**first_stage_model_inputs)[1] | |
outputs = model(**inputs) | |
loss = outputs[0] # model outputs are always tuple in transformers (see doc) | |
if args.n_gpu > 1: | |
loss = loss.mean() # mean() to average on multi-gpu parallel training | |
if args.gradient_accumulation_steps > 1: | |
loss = loss / args.gradient_accumulation_steps | |
if args.fp16: | |
with amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
loss.backward() | |
tr_loss += loss.item() | |
if noised_data_generator is not None: | |
original_loss, noised_loss, r1_loss, r2_loss = outputs[1:5] | |
if args.n_gpu > 1: | |
original_loss = original_loss.mean() | |
noised_loss = noised_loss.mean() | |
r1_loss = r1_loss.mean() | |
r2_loss = r2_loss.mean() | |
if args.gradient_accumulation_steps > 1: | |
original_loss = original_loss / args.gradient_accumulation_steps | |
noised_loss = noised_loss / args.gradient_accumulation_steps | |
r1_loss = r1_loss / args.gradient_accumulation_steps | |
r2_loss = r2_loss / args.gradient_accumulation_steps | |
tr_original_loss += original_loss.item() | |
tr_noised_loss += noised_loss.item() | |
tr_r1_loss += r1_loss.item() | |
tr_r2_loss += r2_loss.item() | |
if (step + 1) % args.gradient_accumulation_steps == 0: | |
if args.fp16: | |
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) | |
else: | |
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) | |
optimizer.step() | |
scheduler.step() # Update learning rate schedule | |
model.zero_grad() | |
global_step += 1 | |
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: | |
do_eval = args.evaluate_steps > 0 and global_step % args.evaluate_steps == 0 | |
cur_result = logging(eval=do_eval) | |
logging_loss = tr_loss | |
logging_original_loss = tr_original_loss | |
logging_noised_loss = tr_noised_loss | |
logging_r1_loss = tr_r1_loss | |
logging_r2_loss = tr_r2_loss | |
best_avg = save_checkpoint_best(cur_result) | |
if args.max_steps > 0 and global_step > args.max_steps: | |
epoch_iterator.close() | |
break | |
if args.local_rank in [-1, 0] and args.logging_each_epoch: | |
cur_result = logging(eval=True) | |
logging_loss = tr_loss | |
logging_original_loss = tr_original_loss | |
logging_noised_loss = tr_noised_loss | |
logging_r1_loss = tr_r1_loss | |
logging_r2_loss = tr_r2_loss | |
best_avg = save_checkpoint_best(cur_result) | |
if args.max_steps > 0 and global_step > args.max_steps: | |
train_iterator.close() | |
break | |
if args.local_rank in [-1, 0]: | |
tb_writer.close() | |
log_writer.close() | |
return global_step, tr_loss / (global_step + 1) | |
def predict(args, model, tokenizer, label_list, prefix="", single_gpu=False, verbose=True): | |
if single_gpu: | |
args = copy.deepcopy(args) | |
args.local_rank = -1 | |
args.n_gpu = 1 | |
eval_task_names = (args.task_name,) | |
eval_outputs_dirs = (args.output_dir,) | |
eval_datasets = [] | |
eval_langs = args.language.split(',') | |
for split in ["test"]: | |
for lang in eval_langs: | |
eval_datasets.append((split, lang)) | |
results = {} | |
# leave interface for multi-task evaluation | |
eval_task = eval_task_names[0] | |
eval_output_dir = eval_outputs_dirs[0] | |
# multi-gpu eval | |
if args.n_gpu > 1: | |
model = torch.nn.DataParallel(model) | |
for split, lang in eval_datasets: | |
task_name = "{0}-{1}".format(split, lang) | |
eval_dataset, guids = load_and_cache_examples(args, eval_task, tokenizer, lang, split=split) | |
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: | |
os.makedirs(eval_output_dir) | |
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) | |
# Note that DistributedSampler samples randomly | |
eval_sampler = SequentialSampler(eval_dataset) | |
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) | |
# Eval! | |
logger.info("***** Running evaluation {} *****".format(prefix)) | |
logger.info(" Num examples = %d", len(eval_dataset)) | |
logger.info(" Batch size = %d", args.eval_batch_size) | |
eval_loss = 0.0 | |
nb_eval_steps = 0 | |
preds = None | |
out_label_ids = None | |
guids = np.array(guids) | |
for batch in tqdm(eval_dataloader, desc="Evaluating"): | |
model.eval() | |
batch = tuple(t.to(args.device) for t in batch) | |
with torch.no_grad(): | |
inputs = {"input_ids": batch[0], "attention_mask": batch[1]} | |
if args.model_type != "distilbert": | |
inputs["token_type_ids"] = ( | |
batch[2] if args.model_type in ["bert"] else None | |
) # XLM and DistilBERT don't use segment_ids | |
outputs = model(**inputs) | |
logits = outputs[0] | |
nb_eval_steps += 1 | |
if preds is None: | |
preds = logits.detach().cpu().numpy() | |
else: | |
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) | |
if args.output_mode == "classification": | |
preds = np.argmax(preds, axis=1) | |
else: | |
raise ValueError("No other `output_mode` for XGLUE.") | |
results[lang] = preds | |
for lang in results.keys(): | |
output_eval_file = os.path.join(eval_output_dir, prefix, "{}.prediction".format(lang)) | |
with open(output_eval_file, "w") as writer: | |
logger.info("***** Eval results {} *****".format(prefix)) | |
print("results:", results) | |
for item in results[lang]: | |
writer.write(str(label_list[item]) + "\n") | |
def evaluate(args, model, tokenizer, prefix="", single_gpu=False, verbose=True): | |
if single_gpu: | |
args = copy.deepcopy(args) | |
args.local_rank = -1 | |
args.n_gpu = 1 | |
eval_task_names = (args.task_name,) | |
eval_outputs_dirs = (args.output_dir,) | |
eval_datasets = [] | |
eval_langs = args.language.split(',') | |
splits = ["valid", "test"] if args.do_train else ["test"] | |
for split in splits: | |
for lang in eval_langs: | |
eval_datasets.append((split, lang)) | |
results = {} | |
# leave interface for multi-task evaluation | |
eval_task = eval_task_names[0] | |
eval_output_dir = eval_outputs_dirs[0] | |
# multi-gpu eval | |
if args.n_gpu > 1: | |
model = torch.nn.DataParallel(model) | |
for split, lang in eval_datasets: | |
task_name = "{0}-{1}".format(split, lang) | |
eval_dataset, guids = load_and_cache_examples(args, eval_task, tokenizer, lang, split=split) | |
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: | |
os.makedirs(eval_output_dir) | |
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) | |
# Note that DistributedSampler samples randomly | |
eval_sampler = SequentialSampler(eval_dataset) | |
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) | |
# Eval! | |
logger.info("***** Running evaluation {} *****".format(prefix)) | |
logger.info(" Num examples = %d", len(eval_dataset)) | |
logger.info(" Batch size = %d", args.eval_batch_size) | |
eval_loss = 0.0 | |
nb_eval_steps = 0 | |
preds = None | |
out_label_ids = None | |
guids = np.array(guids) | |
for batch in eval_dataloader: | |
model.eval() | |
batch = tuple(t.to(args.device) for t in batch) | |
with torch.no_grad(): | |
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} | |
if args.model_type != "distilbert": | |
inputs["token_type_ids"] = ( | |
batch[2] if args.model_type in ["bert"] else None | |
) # XLM and DistilBERT don't use segment_ids | |
outputs = model(**inputs) | |
tmp_eval_loss, logits = outputs[:2] | |
eval_loss += tmp_eval_loss.mean().item() | |
nb_eval_steps += 1 | |
if preds is None: | |
preds = logits.detach().cpu().numpy() | |
out_label_ids = inputs["labels"].detach().cpu().numpy() | |
else: | |
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) | |
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) | |
eval_loss = eval_loss / nb_eval_steps | |
if args.output_mode == "classification": | |
preds = np.argmax(preds, axis=1) | |
else: | |
raise ValueError("No other `output_mode` for XGLUE.") | |
# print("pred:" + split + str([i for i in preds[:500]]), flush=True) | |
# print("label:" + split + str([i for i in out_label_ids[:500]]), flush=True) | |
result = compute_metrics(eval_task, preds, out_label_ids, guids) | |
results[task_name] = result | |
if args.do_train: | |
results["valid_avg"] = average_dic([value for key, value in results.items() if key.startswith("valid")]) | |
results["test_avg"] = average_dic([value for key, value in results.items() if key.startswith("test")]) | |
return results | |
def average_dic(dic_list): | |
if len(dic_list) == 0: | |
return {} | |
dic_sum = {} | |
for dic in dic_list: | |
if len(dic_sum) == 0: | |
for key, value in dic.items(): | |
dic_sum[key] = value | |
else: | |
assert set(dic_sum.keys()) == set(dic.keys()), "sum_keys:{0}, dic_keys:{1}".format(set(dic_sum.keys()), | |
set(dic.keys())) | |
for key, value in dic.items(): | |
dic_sum[key] += value | |
for key in dic_sum: | |
dic_sum[key] /= len(dic_list) | |
return dic_sum | |
def load_and_cache_examples(args, task, tokenizer, language, split="train", return_examples=False): | |
assert split in ["train", "valid", "test"] | |
if args.local_rank not in [-1, 0] and evaluate == "train": | |
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache | |
processor = processors[task](language=language, train_language=language) | |
output_mode = output_modes[task] | |
# Load data features from cache or dataset file | |
# data_cache_name = list(filter(None, args.model_name_or_path.split("/"))).pop() | |
data_cache_name = "xlmr-base-final" | |
if args.data_cache_name is not None: | |
data_cache_name = args.data_cache_name | |
cached_features_file = os.path.join( | |
args.data_dir, | |
"cached_{}_{}_{}_{}_{}".format( | |
split, | |
data_cache_name, | |
str(args.max_seq_length), | |
str(task), | |
str(language), | |
), | |
) | |
if split == "test": | |
examples = processor.get_test_examples(args.data_dir) | |
elif split == "valid": | |
examples = processor.get_valid_examples(args.data_dir) | |
else: # train | |
examples = processor.get_train_examples(args.data_dir) | |
if os.path.exists(cached_features_file) and not args.overwrite_cache: | |
logger.info("Loading features from cached file %s", cached_features_file) | |
features = torch.load(cached_features_file) | |
else: | |
logger.info("Creating features from dataset file at %s", args.data_dir) | |
label_list = processor.get_labels() | |
features = convert_examples_to_features( | |
examples, | |
tokenizer, | |
label_list=label_list, | |
max_length=args.max_seq_length, | |
output_mode=output_mode, | |
pad_on_left=False, | |
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], | |
pad_token_segment_id=0, | |
) | |
if args.local_rank in [-1, 0]: | |
logger.info("Saving features into cached file %s", cached_features_file) | |
torch.save(features, cached_features_file) | |
if args.local_rank == 0 and not evaluate: | |
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache | |
# Convert to Tensors and build dataset | |
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) | |
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) | |
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) | |
all_guids = [f.guid for f in features] | |
all_labels = torch.tensor([f.label for f in features], dtype=torch.long) | |
# if output_mode == "classification" and (not split == "test") : | |
# all_labels = torch.tensor([f.label for f in features], dtype=torch.long) | |
# else: | |
# all_labels = torch.tensor([0 for f in features], dtype=torch.long) | |
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) | |
if return_examples: | |
return dataset, all_guids, examples | |
else: | |
return dataset, all_guids | |
def main(): | |
parser = argparse.ArgumentParser() | |
# Required parameters | |
parser.add_argument( | |
"--data_dir", | |
default=None, | |
type=str, | |
required=True, | |
help="The input data dir. Should contain the .tsv files (or other data files) for the task.", | |
) | |
parser.add_argument( | |
"--model_type", | |
default=None, | |
type=str, | |
required=True, | |
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), | |
) | |
parser.add_argument( | |
"--model_name_or_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), | |
) | |
parser.add_argument( | |
"--reload", | |
default="", | |
type=str, | |
help="path to infoxlm checkpoint", | |
) | |
parser.add_argument( | |
"--data_cache_name", | |
default=None, | |
type=str, | |
help="The name of cached data", | |
) | |
parser.add_argument( | |
"--language", | |
default=None, | |
type=str, | |
required=True, | |
help="Evaluation language. Also train language if `train_language` is set to None.", | |
) | |
parser.add_argument( | |
"--train_language", default=None, type=str, help="Train language if is different of the evaluation language." | |
) | |
parser.add_argument( | |
"--sample_ratio", default=0.0, type=float, help="The training sample ratio of each language" | |
) | |
parser.add_argument( | |
"--task_name", | |
default=None, | |
type=str, | |
required=True, | |
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), | |
) | |
parser.add_argument( | |
"--output_dir", | |
default=None, | |
type=str, | |
required=True, | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
# stable fine-tuning paramters | |
parser.add_argument("--overall_ratio", default=1.0, type=float, help="overall ratio") | |
parser.add_argument("--enable_r1_loss", action="store_true", help="Whether to enable r1 loss.") | |
parser.add_argument("--r1_lambda", default=5.0, type=float, help="lambda of r1 loss") | |
parser.add_argument("--original_loss", action="store_true", | |
help="Whether to use cross entropy loss on the former example.") | |
parser.add_argument("--noised_loss", action="store_true", | |
help="Whether to use cross entropy loss on the latter example.") | |
parser.add_argument("--enable_bpe_switch", action="store_true", help="Whether to enable bpe-switch.") | |
parser.add_argument("--bpe_switch_ratio", default=0.5, type=float, help="bpe_switch_ratio") | |
parser.add_argument("--tokenizer_dir", default=None, type=str, help="tokenizer dir") | |
parser.add_argument("--tokenizer_languages", default=None, type=str, help="tokenizer languages") | |
parser.add_argument("--enable_bpe_sampling", action="store_true", help="Whether to enable bpe sampling.") | |
parser.add_argument("--bpe_sampling_ratio", default=0.5, type=float, help="bpe_sampling_ratio") | |
parser.add_argument("--sampling_alpha", default=5.0, type=float, help="alpha of sentencepiece sampling") | |
parser.add_argument("--sampling_nbest_size", default=-1, type=int, help="nbest_size of sentencepiece sampling") | |
parser.add_argument("--enable_random_noise", action="store_true", help="Whether to enable random noise.") | |
parser.add_argument("--noise_detach_embeds", action="store_true", help="Whether to detach noised embeddings.") | |
parser.add_argument("--noise_eps", default=1e-5, type=float, help="noise eps") | |
parser.add_argument('--noise_type', type=str, default='uniform', | |
choices=['normal', 'uniform'], | |
help='type of noises for RXF methods') | |
parser.add_argument("--enable_code_switch", action="store_true", help="Whether to enable code switch.") | |
parser.add_argument("--code_switch_ratio", default=0.5, type=float, help="code_switch_ratio") | |
parser.add_argument("--dict_dir", default=None, type=str, help="dict dir") | |
parser.add_argument("--dict_languages", default=None, type=str, help="dict languages") | |
parser.add_argument("--enable_word_dropout", action="store_true", help="Whether to enable word dropout.") | |
parser.add_argument("--word_dropout_rate", default=0.1, type=float, help="word dropout rate.") | |
parser.add_argument("--enable_translate_data", action="store_true", help="Whether to enable translate data.") | |
parser.add_argument("--translation_path", default=None, type=str, help="translation path") | |
parser.add_argument("--translate_languages", default=None, type=str, help="translate languages") | |
parser.add_argument("--translate_different_pair", action="store_true", help="Whether to translate different pair.") | |
parser.add_argument("--translate_en_data", action="store_true", help="Whether to translate en data.") | |
parser.add_argument("--enable_data_augmentation", action="store_true", help="Whether to enable data augmentation.") | |
parser.add_argument("--augment_method", default=None, type=str, help="augment method") | |
parser.add_argument("--augment_ratio", default=1.0, type=float, help="augmentation ratio.") | |
parser.add_argument("--first_stage_model_path", default=None, type=str, required=False, | |
help="stable model path") | |
parser.add_argument("--r2_lambda", default=1.0, type=float, required=False, | |
help="r2_lambda") | |
parser.add_argument("--use_hard_labels", action="store_true", help="Whether to use hard labels.") | |
# Other parameters | |
parser.add_argument( | |
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" | |
) | |
parser.add_argument( | |
"--gpu_id", default="", type=str, help="GPU id" | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
default="", | |
type=str, | |
help="Pretrained tokenizer name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--cache_dir", | |
default="", | |
type=str, | |
help="Where do you want to store the pre-trained models downloaded from s3", | |
) | |
parser.add_argument( | |
"--max_seq_length", | |
default=128, | |
type=int, | |
help="The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded.", | |
) | |
parser.add_argument("--do_train", action="store_true", help="Whether to run training.") | |
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the test set.") | |
parser.add_argument("--do_predict", action="store_true", help="Whether to run prediction on the test set.") | |
parser.add_argument("--init_checkpoint", default=None, type=str, | |
help="initial checkpoint for train/predict") | |
parser.add_argument( | |
"--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." | |
) | |
parser.add_argument( | |
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." | |
) | |
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") | |
parser.add_argument( | |
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") | |
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") | |
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument( | |
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." | |
) | |
parser.add_argument( | |
"--max_steps", | |
default=-1, | |
type=int, | |
help="If > 0: set total number of training steps to perform. Override num_train_epochs.", | |
) | |
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") | |
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") | |
parser.add_argument("--evaluate_steps", type=int, default=5000, help="Log every X updates steps.") | |
parser.add_argument("--logging_each_epoch", action="store_true", help="Whether to log after each epoch.") | |
parser.add_argument("--logging_steps_in_sample", type=int, default=-1, help="log every X samples.") | |
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") | |
parser.add_argument( | |
"--eval_all_checkpoints", | |
action="store_true", | |
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", | |
) | |
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") | |
parser.add_argument( | |
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" | |
) | |
parser.add_argument( | |
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" | |
) | |
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") | |
parser.add_argument( | |
"--fp16", | |
action="store_true", | |
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", | |
) | |
parser.add_argument( | |
"--fp16_opt_level", | |
type=str, | |
default="O1", | |
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." | |
"See details at https://nvidia.github.io/apex/amp.html", | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") | |
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") | |
parser.add_argument("--train_cut_ratio", type=float, default=1.0, help="Cut training data to the ratio") | |
args = parser.parse_args() | |
if ( | |
os.path.exists(args.output_dir) | |
and os.listdir(args.output_dir) | |
and args.do_train | |
and not args.overwrite_output_dir | |
): | |
raise ValueError( | |
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( | |
args.output_dir | |
) | |
) | |
# Setup distant debugging if needed | |
if args.server_ip and args.server_port: | |
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script | |
import ptvsd | |
print("Waiting for debugger attach") | |
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) | |
ptvsd.wait_for_attach() | |
# Setup CUDA, GPU & distributed training | |
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id | |
if args.local_rank == -1 or args.no_cuda: | |
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
args.n_gpu = torch.cuda.device_count() | |
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs | |
torch.cuda.set_device(args.local_rank) | |
device = torch.device("cuda", args.local_rank) | |
torch.distributed.init_process_group(backend="nccl") | |
args.n_gpu = 1 | |
args.device = device | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, | |
) | |
logger.warning( | |
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
args.local_rank, | |
device, | |
args.n_gpu, | |
bool(args.local_rank != -1), | |
args.fp16, | |
) | |
# preprocess args | |
if args.train_language is None or args.train_language == "all": | |
args.train_language = args.language | |
assert not ( | |
args.logging_steps != -1 and args.logging_steps_in_sample != -1), "these two parameters can't both be setted" | |
if args.logging_steps == -1 and args.logging_steps_in_sample != -1: | |
total_batch_size = args.n_gpu * args.per_gpu_train_batch_size * args.gradient_accumulation_steps | |
args.logging_steps = args.logging_steps_in_sample // total_batch_size | |
# Set seed | |
set_seed(args) | |
if args.task_name not in processors: | |
raise ValueError("Task not found: %s" % (args.task_name)) | |
processor = processors[args.task_name](language=args.language, train_language=args.train_language) | |
args.output_mode = output_modes[args.task_name] | |
label_list = processor.get_labels() | |
num_labels = len(label_list) | |
# Load pretrained model and tokenizer | |
if args.local_rank not in [-1, 0]: | |
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
args.model_type = args.model_type.lower() | |
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] | |
config = config_class.from_pretrained( | |
args.config_name if args.config_name else args.model_name_or_path, | |
num_labels=num_labels, | |
finetuning_task=args.task_name, | |
cache_dir=args.cache_dir if args.cache_dir else None, | |
) | |
tokenizer = tokenizer_class.from_pretrained( | |
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, | |
do_lower_case=args.do_lower_case, | |
cache_dir=args.cache_dir if args.cache_dir else None, | |
) | |
if args.enable_r1_loss or args.noised_loss or args.enable_data_augmentation: | |
noised_data_generator = NoisedDataGenerator( | |
task_name=args.task_name, | |
enable_r1_loss=args.enable_r1_loss, | |
r1_lambda=args.r1_lambda, | |
original_loss=args.original_loss, | |
noised_loss=args.noised_loss, | |
max_length=args.max_seq_length, | |
overall_ratio=args.overall_ratio, | |
enable_bpe_switch=args.enable_bpe_switch, | |
bpe_switch_ratio=args.bpe_switch_ratio, | |
tokenizer_dir=args.tokenizer_dir, | |
do_lower_case=args.do_lower_case, | |
tokenizer_languages=args.tokenizer_languages.split(',') if args.tokenizer_languages is not None else [], | |
enable_bpe_sampling=args.enable_bpe_sampling, | |
bpe_sampling_ratio=args.bpe_sampling_ratio, | |
tokenizer=tokenizer, | |
sampling_alpha=args.sampling_alpha, | |
sampling_nbest_size=args.sampling_nbest_size, | |
enable_random_noise=args.enable_random_noise, | |
noise_detach_embeds=args.noise_detach_embeds, | |
noise_eps=args.noise_eps, | |
noise_type=args.noise_type, | |
enable_code_switch=args.enable_code_switch, | |
code_switch_ratio=args.code_switch_ratio, | |
dict_dir=args.dict_dir, | |
dict_languages=args.dict_languages.split(',') if args.dict_languages is not None else [], | |
enable_word_dropout=args.enable_word_dropout, | |
word_dropout_rate=args.word_dropout_rate, | |
enable_translate_data=args.enable_translate_data, | |
translation_path=args.translation_path, | |
train_language=args.language if args.translate_languages is None else args.translate_languages, | |
data_dir=args.data_dir, | |
translate_different_pair=args.translate_different_pair, | |
translate_en_data=args.translate_en_data, | |
enable_data_augmentation=args.enable_data_augmentation, | |
augment_method=args.augment_method, | |
augment_ratio=args.augment_ratio, | |
r2_lambda=args.r2_lambda, | |
use_hard_labels=args.use_hard_labels, | |
) | |
else: | |
noised_data_generator = None | |
if args.first_stage_model_path is not None: | |
first_stage_model = model_class.from_pretrained(args.first_stage_model_path, | |
config=config) | |
else: | |
first_stage_model = None | |
state_dict = None | |
if args.reload != "": | |
from tools.dump_hf_state_dict import convert_pt_to_hf | |
state_dict = convert_pt_to_hf(os.path.join(args.model_name_or_path, 'pytorch_model.bin'), args.reload, logger) | |
# state_dict = torch.load(args.reload) | |
model = model_class.from_pretrained( | |
args.model_name_or_path, | |
from_tf=bool(".ckpt" in args.model_name_or_path), | |
config=config, | |
noised_data_generator=noised_data_generator, | |
cache_dir=args.cache_dir if args.cache_dir else None, | |
state_dict=state_dict, | |
) | |
if args.local_rank == 0: | |
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
if first_stage_model is not None: | |
first_stage_model.to(args.device) | |
model.to(args.device) | |
logger.info("Training/evaluation parameters %s", args) | |
# Training | |
if args.do_train: | |
# Create output directory if needed | |
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: | |
os.makedirs(args.output_dir) | |
train_langs = args.train_language.split(',') | |
dataset_list = [] | |
train_examples = [] | |
for lang in train_langs: | |
lg_train_dataset, guids, lg_examples = load_and_cache_examples(args, args.task_name, tokenizer, lang, | |
split="train", return_examples=True) | |
dataset_list.append(lg_train_dataset) | |
train_examples += lg_examples | |
train_dataset = ConcatDataset(dataset_list) | |
global_step, tr_loss = train(args, train_examples, train_dataset, model, first_stage_model, tokenizer, | |
noised_data_generator) | |
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) | |
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() | |
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): | |
logger.info("Saving model checkpoint to %s", args.output_dir) | |
# Save a trained model, configuration and tokenizer using `save_pretrained()`. | |
# They can then be reloaded using `from_pretrained()` | |
model_to_save = ( | |
model.module if hasattr(model, "module") else model | |
) # Take care of distributed/parallel training | |
model_to_save.save_pretrained(args.output_dir) | |
tokenizer.save_pretrained(args.output_dir) | |
# Good practice: save your training arguments together with the trained model | |
torch.save(args, os.path.join(args.output_dir, "training_args.bin")) | |
# Load a trained model and vocabulary that you have fine-tuned | |
model = model_class.from_pretrained(args.output_dir) | |
tokenizer = tokenizer_class.from_pretrained(args.output_dir) | |
model.to(args.device) | |
# Evaluation | |
results = {} | |
if args.init_checkpoint: | |
best_checkpoint = args.init_checkpoint | |
elif os.path.exists(os.path.join(args.output_dir, 'checkpoint-best')): | |
best_checkpoint = os.path.join(args.output_dir, 'checkpoint-best') | |
else: | |
best_checkpoint = args.output_dir | |
best_f1 = 0 | |
results = {} | |
if args.do_eval and args.local_rank in [-1, 0]: | |
checkpoint = best_checkpoint | |
tokenizer = tokenizer_class.from_pretrained(checkpoint, do_lower_case=args.do_lower_case) | |
logger.info("Evaluate the following checkpoints: %s", checkpoint) | |
model = model_class.from_pretrained(checkpoint) | |
model.to(args.device) | |
result = evaluate(args, model, tokenizer) | |
for key, value in result.items(): | |
logger.info("eval_{}: {}".format(key, value)) | |
log_writer = open(os.path.join(args.output_dir, "evaluate_logs.txt"), 'w') | |
log_writer.write("{0}\t{1}".format("evaluate", json.dumps(result)) + '\n') | |
if args.do_predict and args.local_rank in [-1, 0]: | |
# tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) | |
checkpoint = best_checkpoint | |
tokenizer = tokenizer_class.from_pretrained(checkpoint, do_lower_case=args.do_lower_case) | |
model = model_class.from_pretrained(checkpoint) | |
model.to(args.device) | |
predict(args, model, tokenizer, label_list) | |
logger.info("Task {0} finished!".format(args.task_name)) | |
return results | |
if __name__ == "__main__": | |
main() | |