Tzktz's picture
Upload 7664 files
6fc683c verified
import torch
import math
from typing import Dict, List, Optional
from fairseq.sequence_generator import SequenceGenerator
from torch import Tensor
class TextRecognitionGenerator(SequenceGenerator):
def _generate(
self,
sample: Dict[str, Dict[str, Tensor]],
prefix_tokens: Optional[Tensor] = None,
constraints: Optional[Tensor] = None,
bos_token: Optional[int] = None,
):
incremental_states = torch.jit.annotate(
List[Dict[str, Dict[str, Optional[Tensor]]]],
[
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {})
for i in range(self.model.models_size)
],
)
net_input = sample["net_input"]
device = sample["net_input"]["imgs"].device
# compute the encoder output for each beam
# "encoder_out": [x], # T x B x C
# "encoder_padding_mask": [encoder_padding_mask], # B x T
# "encoder_embedding": [encoder_embedding], # B x T x C
# "encoder_states": [], # List[T x B x C]
# "src_tokens": [],
# "src_lengths": [],
encoder_outs = self.model.forward_encoder(net_input) # T x B x C
src_lengths = encoder_outs[0]['encoder_padding_mask'][0].eq(0).long().sum(dim=1) # B
src_tokens = encoder_outs[0]['encoder_padding_mask'][0] # B x T
# bsz: total number of sentences in beam
# Note that src_tokens may have more than 2 dimensions (i.e. audio features)
bsz, src_len = src_tokens.size()[:2]
beam_size = self.beam_size
if constraints is not None and not self.search.supports_constraints:
raise NotImplementedError(
"Target-side constraints were provided, but search method doesn't support them"
)
# Initialize constraints, when active
self.search.init_constraints(constraints, beam_size)
max_len: int = -1
if self.match_source_len:
max_len = src_lengths.max().item()
else:
max_len = min(
int(self.max_len_a * src_len + self.max_len_b),
# exclude the EOS marker
self.model.max_decoder_positions() - 1,
)
assert (
self.min_len <= max_len
), "min_len cannot be larger than max_len, please adjust these!"
# placeholder of indices for bsz * beam_size to hold tokens and accumulative scores
new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1)
new_order = new_order.to(src_tokens.device).long()
encoder_outs = self.model.reorder_encoder_out(encoder_outs, new_order)
# ensure encoder_outs is a List.
assert encoder_outs is not None
# initialize buffers
scores = (
torch.zeros(bsz * beam_size, max_len + 1).to(src_tokens).float()
) # +1 for eos; pad is never chosen for scoring
tokens = (
torch.zeros(bsz * beam_size, max_len + 2)
.to(src_tokens)
.long()
.fill_(self.pad)
) # +2 for eos and pad
tokens[:, 0] = self.eos if bos_token is None else bos_token
attn: Optional[Tensor] = None
# A list that indicates candidates that should be ignored.
# For example, suppose we're sampling and have already finalized 2/5
# samples. Then cands_to_ignore would mark 2 positions as being ignored,
# so that we only finalize the remaining 3 samples.
cands_to_ignore = (
torch.zeros(bsz, beam_size).to(src_tokens).eq(-1)
) # forward and backward-compatible False mask
# list of completed sentences
finalized = torch.jit.annotate(
List[List[Dict[str, Tensor]]],
[torch.jit.annotate(List[Dict[str, Tensor]], []) for i in range(bsz)],
) # contains lists of dictionaries of infomation about the hypothesis being finalized at each step
finished = [
False for i in range(bsz)
] # a boolean array indicating if the sentence at the index is finished or not
num_remaining_sent = bsz # number of sentences remaining
# number of candidate hypos per step
cand_size = 2 * beam_size # 2 x beam size in case half are EOS
# offset arrays for converting between different indexing schemes
bbsz_offsets = (
(torch.arange(0, bsz) * beam_size)
.unsqueeze(1)
.type_as(tokens)
.to(src_tokens.device)
)
cand_offsets = torch.arange(0, cand_size).type_as(tokens).to(src_tokens.device)
reorder_state: Optional[Tensor] = None
batch_idxs: Optional[Tensor] = None
original_batch_idxs: Optional[Tensor] = None
if "id" in sample and isinstance(sample["id"], Tensor):
original_batch_idxs = sample["id"]
else:
original_batch_idxs = torch.arange(0, bsz).type_as(tokens)
for step in range(max_len + 1): # one extra step for EOS marker
# reorder decoder internal states based on the prev choice of beams
if reorder_state is not None:
if batch_idxs is not None:
# update beam indices to take into account removed sentences
corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as(
batch_idxs
)
reorder_state.view(-1, beam_size).add_(
corr.unsqueeze(-1) * beam_size
)
original_batch_idxs = original_batch_idxs[batch_idxs]
self.model.reorder_incremental_state(incremental_states, reorder_state)
encoder_outs = self.model.reorder_encoder_out(
encoder_outs, reorder_state
)
lprobs, avg_attn_scores = self.model.forward_decoder(
tokens[:, : step + 1],
encoder_outs,
incremental_states,
self.temperature,
)
if self.lm_model is not None:
lm_out = self.lm_model(tokens[:, : step + 1])
probs = self.lm_model.get_normalized_probs(
lm_out, log_probs=True, sample=None
)
probs = probs[:, -1, :] * self.lm_weight
lprobs += probs
lprobs[lprobs != lprobs] = torch.tensor(-math.inf).to(lprobs)
lprobs[:, self.pad] = -math.inf # never select pad
lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty
# handle max length constraint
if step >= max_len:
lprobs[:, : self.eos] = -math.inf
lprobs[:, self.eos + 1 :] = -math.inf
# handle prefix tokens (possibly with different lengths)
if (
prefix_tokens is not None
and step < prefix_tokens.size(1)
and step < max_len
):
lprobs, tokens, scores = self._prefix_tokens(
step, lprobs, scores, tokens, prefix_tokens, beam_size
)
elif step < self.min_len:
# minimum length constraint (does not apply if using prefix_tokens)
lprobs[:, self.eos] = -math.inf
# Record attention scores, only support avg_attn_scores is a Tensor
if avg_attn_scores is not None:
if attn is None:
attn = torch.empty(
bsz * beam_size, avg_attn_scores.size(1), max_len + 2
).to(scores)
attn[:, :, step + 1].copy_(avg_attn_scores)
scores = scores.type_as(lprobs)
eos_bbsz_idx = torch.empty(0).to(
tokens
) # indices of hypothesis ending with eos (finished sentences)
eos_scores = torch.empty(0).to(
scores
) # scores of hypothesis ending with eos (finished sentences)
if self.should_set_src_lengths:
self.search.set_src_lengths(src_lengths)
if self.repeat_ngram_blocker is not None:
lprobs = self.repeat_ngram_blocker(tokens, lprobs, bsz, beam_size, step)
# Shape: (batch, cand_size)
cand_scores, cand_indices, cand_beams = self.search.step(
step,
lprobs.view(bsz, -1, self.vocab_size),
scores.view(bsz, beam_size, -1)[:, :, :step],
tokens[:, : step + 1],
original_batch_idxs,
)
# cand_bbsz_idx contains beam indices for the top candidate
# hypotheses, with a range of values: [0, bsz*beam_size),
# and dimensions: [bsz, cand_size]
cand_bbsz_idx = cand_beams.add(bbsz_offsets)
# finalize hypotheses that end in eos
# Shape of eos_mask: (batch size, beam size)
eos_mask = cand_indices.eq(self.eos) & cand_scores.ne(-math.inf)
eos_mask[:, :beam_size][cands_to_ignore] = torch.tensor(0).to(eos_mask)
# only consider eos when it's among the top beam_size indices
# Now we know what beam item(s) to finish
# Shape: 1d list of absolute-numbered
eos_bbsz_idx = torch.masked_select(
cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size]
)
finalized_sents: List[int] = []
if eos_bbsz_idx.numel() > 0:
eos_scores = torch.masked_select(
cand_scores[:, :beam_size], mask=eos_mask[:, :beam_size]
)
finalized_sents = self.finalize_hypos(
step,
eos_bbsz_idx,
eos_scores,
tokens,
scores,
finalized,
finished,
beam_size,
attn,
src_lengths,
max_len,
)
num_remaining_sent -= len(finalized_sents)
assert num_remaining_sent >= 0
if num_remaining_sent == 0:
break
if self.search.stop_on_max_len and step >= max_len:
break
assert step < max_len, f"{step} < {max_len}"
# Remove finalized sentences (ones for which {beam_size}
# finished hypotheses have been generated) from the batch.
if len(finalized_sents) > 0:
new_bsz = bsz - len(finalized_sents)
# construct batch_idxs which holds indices of batches to keep for the next pass
batch_mask = torch.ones(
bsz, dtype=torch.bool, device=cand_indices.device
)
batch_mask[finalized_sents] = False
# TODO replace `nonzero(as_tuple=False)` after TorchScript supports it
batch_idxs = torch.arange(
bsz, device=cand_indices.device
).masked_select(batch_mask)
# Choose the subset of the hypothesized constraints that will continue
self.search.prune_sentences(batch_idxs)
eos_mask = eos_mask[batch_idxs]
cand_beams = cand_beams[batch_idxs]
bbsz_offsets.resize_(new_bsz, 1)
cand_bbsz_idx = cand_beams.add(bbsz_offsets)
cand_scores = cand_scores[batch_idxs]
cand_indices = cand_indices[batch_idxs]
if prefix_tokens is not None:
prefix_tokens = prefix_tokens[batch_idxs]
src_lengths = src_lengths[batch_idxs]
cands_to_ignore = cands_to_ignore[batch_idxs]
scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
if attn is not None:
attn = attn.view(bsz, -1)[batch_idxs].view(
new_bsz * beam_size, attn.size(1), -1
)
bsz = new_bsz
else:
batch_idxs = None
# Set active_mask so that values > cand_size indicate eos hypos
# and values < cand_size indicate candidate active hypos.
# After, the min values per row are the top candidate active hypos
# Rewrite the operator since the element wise or is not supported in torchscript.
eos_mask[:, :beam_size] = ~((~cands_to_ignore) & (~eos_mask[:, :beam_size]))
active_mask = torch.add(
eos_mask.type_as(cand_offsets) * cand_size,
cand_offsets[: eos_mask.size(1)],
)
# get the top beam_size active hypotheses, which are just
# the hypos with the smallest values in active_mask.
# {active_hypos} indicates which {beam_size} hypotheses
# from the list of {2 * beam_size} candidates were
# selected. Shapes: (batch size, beam size)
new_cands_to_ignore, active_hypos = torch.topk(
active_mask, k=beam_size, dim=1, largest=False
)
# update cands_to_ignore to ignore any finalized hypos.
cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size]
# Make sure there is at least one active item for each sentence in the batch.
assert (~cands_to_ignore).any(dim=1).all()
# update cands_to_ignore to ignore any finalized hypos
# {active_bbsz_idx} denotes which beam number is continued for each new hypothesis (a beam
# can be selected more than once).
active_bbsz_idx = torch.gather(cand_bbsz_idx, dim=1, index=active_hypos)
active_scores = torch.gather(cand_scores, dim=1, index=active_hypos)
active_bbsz_idx = active_bbsz_idx.view(-1)
active_scores = active_scores.view(-1)
# copy tokens and scores for active hypotheses
# Set the tokens for each beam (can select the same row more than once)
tokens[:, : step + 1] = torch.index_select(
tokens[:, : step + 1], dim=0, index=active_bbsz_idx
)
# Select the next token for each of them
tokens.view(bsz, beam_size, -1)[:, :, step + 1] = torch.gather(
cand_indices, dim=1, index=active_hypos
)
if step > 0:
scores[:, :step] = torch.index_select(
scores[:, :step], dim=0, index=active_bbsz_idx
)
scores.view(bsz, beam_size, -1)[:, :, step] = torch.gather(
cand_scores, dim=1, index=active_hypos
)
# Update constraints based on which candidates were selected for the next beam
self.search.update_constraints(active_hypos)
# copy attention for active hypotheses
if attn is not None:
attn[:, :, : step + 2] = torch.index_select(
attn[:, :, : step + 2], dim=0, index=active_bbsz_idx
)
# reorder incremental state in decoder
reorder_state = active_bbsz_idx
# sort by score descending
for sent in range(len(finalized)):
scores = torch.tensor(
[float(elem["score"].item()) for elem in finalized[sent]]
)
_, sorted_scores_indices = torch.sort(scores, descending=True)
finalized[sent] = [finalized[sent][ssi] for ssi in sorted_scores_indices]
finalized[sent] = torch.jit.annotate(
List[Dict[str, Tensor]], finalized[sent]
)
return finalized