Tzktz's picture
Upload 7664 files
6fc683c verified
import os
from typing import Optional, Union
from transformers.trainer import Trainer
from transformers.modeling_outputs import SequenceClassifierOutput
from logger_config import logger
from metrics import accuracy
from utils import AverageMeter
class RerankerTrainer(Trainer):
def __init__(self, *pargs, **kwargs):
super(RerankerTrainer, self).__init__(*pargs, **kwargs)
self.acc_meter = AverageMeter('acc', round_digits=2)
self.last_epoch = 0
def _save(self, output_dir: Optional[str] = None, state_dict=None):
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info("Saving model checkpoint to {}".format(output_dir))
self.model.save_pretrained(output_dir)
if self.tokenizer is not None and self.is_world_process_zero():
self.tokenizer.save_pretrained(output_dir)
def compute_loss(self, model, inputs, return_outputs=False):
outputs: SequenceClassifierOutput = model(inputs)
loss = outputs.loss
if self.model.training:
labels = inputs['labels']
step_acc = accuracy(output=outputs.logits.detach(), target=labels)[0]
self.acc_meter.update(step_acc)
if self.state.global_step > 0 and self.state.global_step % self.args.logging_steps == 0:
logger.info('step: {}, {}'.format(self.state.global_step, self.acc_meter))
self._reset_meters_if_needed()
return (loss, outputs) if return_outputs else loss
def _reset_meters_if_needed(self):
if int(self.state.epoch) != self.last_epoch:
self.last_epoch = int(self.state.epoch)
self.acc_meter.reset()