Spaces:
Sleeping
Sleeping
import logging | |
import numpy as np | |
from typing import Dict | |
from transformers.utils.logging import enable_explicit_format | |
from transformers.trainer_callback import PrinterCallback | |
from transformers import ( | |
AutoTokenizer, | |
HfArgumentParser, | |
set_seed, | |
PreTrainedTokenizerFast, | |
EvalPrediction, | |
) | |
from logger_config import logger, LoggerCallback | |
from config import Arguments | |
from loaders import ReplaceLMDataloader | |
from collators import DataCollatorForReplaceLM | |
from trainers import ReplaceLMTrainer | |
from models import ReplaceLM | |
def _common_setup(args: Arguments): | |
if args.process_index > 0: | |
logger.setLevel(logging.WARNING) | |
enable_explicit_format() | |
set_seed(args.seed) | |
def _compute_metrics(eval_pred: EvalPrediction) -> Dict[str, float]: | |
preds = eval_pred.predictions | |
avg_enc_mlm_loss = float(np.mean(preds[0])) | |
avg_dec_mlm_loss = float(np.mean(preds[1])) | |
avg_g_mlm_loss = float(np.mean(preds[2])) | |
avg_replace_ratio = float(np.mean(preds[3])) | |
return {'avg_enc_mlm_loss': round(avg_enc_mlm_loss, 4), | |
'avg_dec_mlm_loss': round(avg_dec_mlm_loss, 4), | |
'avg_g_mlm_loss': round(avg_g_mlm_loss, 4), | |
'avg_replace_ratio': round(avg_replace_ratio, 4)} | |
def main(): | |
parser = HfArgumentParser((Arguments,)) | |
args: Arguments = parser.parse_args_into_dataclasses()[0] | |
_common_setup(args) | |
logger.info('Args={}'.format(str(args))) | |
tokenizer: PreTrainedTokenizerFast = AutoTokenizer.from_pretrained(args.model_name_or_path) | |
model: ReplaceLM = ReplaceLM.from_pretrained( | |
all_args=args, model_name_or_path=args.model_name_or_path) | |
logger.info(model) | |
logger.info('Vocab size: {}'.format(len(tokenizer))) | |
dataloader = ReplaceLMDataloader(args=args, tokenizer=tokenizer) | |
train_dataset, eval_dataset = dataloader.train_dataset, dataloader.eval_dataset | |
data_collator = DataCollatorForReplaceLM( | |
tokenizer, | |
pad_to_multiple_of=8 if args.fp16 else None, | |
args=args, | |
) | |
trainer: ReplaceLMTrainer = ReplaceLMTrainer( | |
model=model, | |
args=args, | |
train_dataset=train_dataset if args.do_train else None, | |
eval_dataset=eval_dataset if args.do_eval else None, | |
data_collator=data_collator, | |
compute_metrics=_compute_metrics, | |
tokenizer=tokenizer, | |
) | |
trainer.remove_callback(PrinterCallback) | |
trainer.add_callback(LoggerCallback) | |
model.trainer = trainer | |
if args.do_train: | |
train_result = trainer.train() | |
trainer.save_model() | |
metrics = train_result.metrics | |
metrics["train_samples"] = len(train_dataset) | |
trainer.log_metrics("train", metrics) | |
trainer.save_metrics("train", metrics) | |
if args.do_eval: | |
logger.info("*** Evaluate ***") | |
metrics = trainer.evaluate() | |
metrics["eval_samples"] = len(eval_dataset) | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
return | |
if __name__ == "__main__": | |
main() | |