Spaces:
Sleeping
Sleeping
import logging | |
import torch | |
from typing import Dict | |
from transformers.utils.logging import enable_explicit_format | |
from transformers.trainer_callback import PrinterCallback | |
from transformers import ( | |
AutoTokenizer, | |
HfArgumentParser, | |
EvalPrediction, | |
Trainer, | |
set_seed, | |
PreTrainedTokenizerFast | |
) | |
from logger_config import logger, LoggerCallback | |
from config import Arguments | |
from trainers.reranker_trainer import RerankerTrainer | |
from loaders import CrossEncoderDataLoader | |
from collators import CrossEncoderCollator | |
from metrics import accuracy | |
from models import Reranker | |
def _common_setup(args: Arguments): | |
if args.process_index > 0: | |
logger.setLevel(logging.WARNING) | |
enable_explicit_format() | |
set_seed(args.seed) | |
def _compute_metrics(eval_pred: EvalPrediction) -> Dict: | |
preds = eval_pred.predictions | |
if isinstance(preds, tuple): | |
preds = preds[-1] | |
logits = torch.tensor(preds).float() | |
labels = torch.tensor(eval_pred.label_ids).long() | |
acc = accuracy(output=logits, target=labels)[0] | |
return {'acc': acc} | |
def main(): | |
parser = HfArgumentParser((Arguments,)) | |
args: Arguments = parser.parse_args_into_dataclasses()[0] | |
_common_setup(args) | |
logger.info('Args={}'.format(str(args))) | |
tokenizer: PreTrainedTokenizerFast = AutoTokenizer.from_pretrained(args.model_name_or_path) | |
model: Reranker = Reranker.from_pretrained( | |
all_args=args, | |
pretrained_model_name_or_path=args.model_name_or_path, | |
num_labels=1) | |
logger.info(model) | |
logger.info('Vocab size: {}'.format(len(tokenizer))) | |
data_collator = CrossEncoderCollator( | |
tokenizer=tokenizer, | |
pad_to_multiple_of=8 if args.fp16 else None) | |
rerank_data_loader = CrossEncoderDataLoader(args=args, tokenizer=tokenizer) | |
train_dataset = rerank_data_loader.train_dataset | |
eval_dataset = rerank_data_loader.eval_dataset | |
trainer: Trainer = RerankerTrainer( | |
model=model, | |
args=args, | |
train_dataset=train_dataset if args.do_train else None, | |
eval_dataset=eval_dataset if args.do_eval else None, | |
data_collator=data_collator, | |
compute_metrics=_compute_metrics, | |
tokenizer=tokenizer, | |
) | |
trainer.remove_callback(PrinterCallback) | |
trainer.add_callback(LoggerCallback) | |
rerank_data_loader.trainer = trainer | |
if args.do_train: | |
train_result = trainer.train() | |
trainer.save_model() | |
metrics = train_result.metrics | |
metrics["train_samples"] = len(train_dataset) | |
trainer.log_metrics("train", metrics) | |
trainer.save_metrics("train", metrics) | |
if args.do_eval: | |
logger.info("*** Evaluate ***") | |
metrics = trainer.evaluate(metric_key_prefix="eval") | |
metrics["eval_samples"] = len(eval_dataset) | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
return | |
if __name__ == "__main__": | |
main() | |