Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# coding=utf-8 | |
import logging | |
import os | |
import sys | |
import numpy as np | |
from datasets import ClassLabel, load_dataset | |
import layoutlmft.data.datasets.xfun | |
import transformers | |
from layoutlmft import AutoModelForRelationExtraction | |
from layoutlmft.data.data_args import XFUNDataTrainingArguments | |
from layoutlmft.data.data_collator import DataCollatorForKeyValueExtraction | |
from layoutlmft.evaluation import re_score | |
from layoutlmft.models.model_args import ModelArguments | |
from layoutlmft.trainers import XfunReTrainer | |
from transformers import ( | |
AutoConfig, | |
AutoTokenizer, | |
HfArgumentParser, | |
PreTrainedTokenizerFast, | |
TrainingArguments, | |
set_seed, | |
) | |
from transformers.trainer_utils import get_last_checkpoint, is_main_process | |
logger = logging.getLogger(__name__) | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, XFUNDataTrainingArguments, TrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
# Detecting last checkpoint. | |
last_checkpoint = None | |
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | |
last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
"Use --overwrite_output_dir to overcome." | |
) | |
elif last_checkpoint is not None: | |
logger.info( | |
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
) | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) | |
# Log on each process the small summary: | |
logger.warning( | |
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
) | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
if is_main_process(training_args.local_rank): | |
transformers.utils.logging.set_verbosity_info() | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# Set seed before initializing model. | |
set_seed(training_args.seed) | |
datasets = load_dataset( | |
os.path.abspath(layoutlmft.data.datasets.xfun.__file__), | |
f"xfun.{data_args.lang}", | |
additional_langs=data_args.additional_langs, | |
keep_in_memory=True, | |
) | |
if training_args.do_train: | |
column_names = datasets["train"].column_names | |
features = datasets["train"].features | |
else: | |
column_names = datasets["validation"].column_names | |
features = datasets["validation"].features | |
text_column_name = "input_ids" | |
label_column_name = "labels" | |
remove_columns = column_names | |
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the | |
# unique labels. | |
def get_label_list(labels): | |
unique_labels = set() | |
for label in labels: | |
unique_labels = unique_labels | set(label) | |
label_list = list(unique_labels) | |
label_list.sort() | |
return label_list | |
if isinstance(features[label_column_name].feature, ClassLabel): | |
label_list = features[label_column_name].feature.names | |
# No need to convert the labels since they are already ints. | |
label_to_id = {i: i for i in range(len(label_list))} | |
else: | |
label_list = get_label_list(datasets["train"][label_column_name]) | |
label_to_id = {l: i for i, l in enumerate(label_list)} | |
num_labels = len(label_list) | |
# Load pretrained model and tokenizer | |
# | |
# Distributed training: | |
# The .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
config = AutoConfig.from_pretrained( | |
model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
num_labels=num_labels, | |
finetuning_task=data_args.task_name, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
use_fast=True, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
model = AutoModelForRelationExtraction.from_pretrained( | |
model_args.model_name_or_path, | |
from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
config=config, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
# Tokenizer check: this script requires a fast tokenizer. | |
if not isinstance(tokenizer, PreTrainedTokenizerFast): | |
raise ValueError( | |
"This example script only works for models that have a fast tokenizer. Checkout the big table of models " | |
"at https://huggingface.co/transformers/index.html#bigtable to find the model types that meet this " | |
"requirement" | |
) | |
# Preprocessing the dataset | |
# Padding strategy | |
padding = "max_length" if data_args.pad_to_max_length else False | |
if training_args.do_train: | |
if "train" not in datasets: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = datasets["train"] | |
if data_args.max_train_samples is not None: | |
train_dataset = train_dataset.select(range(data_args.max_train_samples)) | |
if training_args.do_eval: | |
if "validation" not in datasets: | |
raise ValueError("--do_eval requires a validation dataset") | |
eval_dataset = datasets["validation"] | |
if data_args.max_val_samples is not None: | |
eval_dataset = eval_dataset.select(range(data_args.max_val_samples)) | |
if training_args.do_predict: | |
if "test" not in datasets: | |
raise ValueError("--do_predict requires a test dataset") | |
test_dataset = datasets["test"] | |
if data_args.max_test_samples is not None: | |
test_dataset = test_dataset.select(range(data_args.max_test_samples)) | |
# Data collator | |
data_collator = DataCollatorForKeyValueExtraction( | |
tokenizer, | |
pad_to_multiple_of=8 if training_args.fp16 else None, | |
padding=padding, | |
max_length=512, | |
) | |
def compute_metrics(p): | |
pred_relations, gt_relations = p | |
score = re_score(pred_relations, gt_relations, mode="boundaries") | |
return score | |
# Initialize our Trainer | |
trainer = XfunReTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset if training_args.do_train else None, | |
eval_dataset=eval_dataset if training_args.do_eval else None, | |
tokenizer=tokenizer, | |
data_collator=data_collator, | |
compute_metrics=compute_metrics, | |
) | |
# Training | |
if training_args.do_train: | |
checkpoint = last_checkpoint if last_checkpoint else None | |
train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
metrics = train_result.metrics | |
trainer.save_model() # Saves the tokenizer too for easy upload | |
max_train_samples = ( | |
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) | |
) | |
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) | |
trainer.log_metrics("train", metrics) | |
trainer.save_metrics("train", metrics) | |
trainer.save_state() | |
# Evaluation | |
if training_args.do_eval: | |
logger.info("*** Evaluate ***") | |
metrics = trainer.evaluate() | |
max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset) | |
metrics["eval_samples"] = min(max_val_samples, len(eval_dataset)) | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
def _mp_fn(index): | |
# For xla_spawn (TPUs) | |
main() | |
if __name__ == "__main__": | |
main() | |