Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import unittest | |
import torch | |
from fairseq.data import LanguagePairDataset, TokenBlockDataset | |
from fairseq.data.concat_dataset import ConcatDataset | |
from tests.test_train import mock_dict | |
class TestConcatDataset(unittest.TestCase): | |
def setUp(self): | |
d = mock_dict() | |
tokens_1 = torch.LongTensor([1]).view(1, -1) | |
tokens_ds1 = TokenBlockDataset( | |
tokens_1, | |
sizes=[tokens_1.size(-1)], | |
block_size=1, | |
pad=0, | |
eos=1, | |
include_targets=False, | |
) | |
self.dataset_1 = LanguagePairDataset( | |
tokens_ds1, tokens_ds1.sizes, d, shuffle=False | |
) | |
tokens_2 = torch.LongTensor([2]).view(1, -1) | |
tokens_ds2 = TokenBlockDataset( | |
tokens_2, | |
sizes=[tokens_2.size(-1)], | |
block_size=1, | |
pad=0, | |
eos=1, | |
include_targets=False, | |
) | |
self.dataset_2 = LanguagePairDataset( | |
tokens_ds2, tokens_ds2.sizes, d, shuffle=False | |
) | |
def test_concat_dataset_basics(self): | |
d = ConcatDataset( | |
[self.dataset_1, self.dataset_2] | |
) | |
assert(len(d) == 2) | |
assert(d[0]['source'][0] == 1) | |
assert(d[1]['source'][0] == 2) | |
d = ConcatDataset( | |
[self.dataset_1, self.dataset_2], sample_ratios=[1, 2] | |
) | |
assert(len(d) == 3) | |
assert(d[0]['source'][0] == 1) | |
assert(d[1]['source'][0] == 2) | |
assert(d[2]['source'][0] == 2) | |
d = ConcatDataset( | |
[self.dataset_1, self.dataset_2], sample_ratios=[2, 1] | |
) | |
assert(len(d) == 3) | |
assert(d[0]['source'][0] == 1) | |
assert(d[1]['source'][0] == 1) | |
assert(d[2]['source'][0] == 2) | |