Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
def emulate_int(w, bits, method, scale=None, zero_point=None): | |
q = globals()[f"emulate_int{bits}_{method}"] | |
return q(w, scale=scale, zero_point=zero_point) | |
def quantize(w, scale, zero_point): | |
return ( | |
torch.clamp(torch.round(w / scale + zero_point), 0, 255) - zero_point | |
) * scale | |
def emulate_int8_histogram(w, scale=None, zero_point=None): | |
if scale is None: | |
obs = torch.quantization.observer.HistogramObserver() | |
_ = obs(w.float()) | |
scale, zero_point = obs.calculate_qparams() | |
scale = scale.cuda().type_as(w) | |
zero_point = zero_point.cuda().type_as(w) | |
return quantize(w, scale, zero_point), scale, zero_point | |
def emulate_int8_channel(w, scale=None, zero_point=None): | |
if scale is None: | |
obs = torch.quantization.observer.PerChannelMinMaxObserver( | |
ch_axis=-1, qscheme=torch.per_channel_symmetric | |
) | |
_ = obs(w) | |
scale, zero_point, ch_axis = obs.get_qparams() | |
scale = scale.cuda().type_as(w) | |
zero_point = zero_point.cuda().type_as(w) | |
return quantize(w, scale, zero_point), scale, zero_point | |
def emulate_int8_tensor(w, scale=None, zero_point=None): | |
if scale is None: | |
obs = torch.quantization.observer.MinMaxObserver() | |
_ = obs(w) | |
scale, zero_point = obs.calculate_qparams() | |
scale = scale.cuda().type_as(w) | |
zero_point = zero_point.cuda().type_as(w) | |
return quantize(w, scale, zero_point), scale, zero_point | |