Spaces:
Sleeping
Sleeping
Dit-document-layout-analysis
/
unilm
/decoding
/GAD
/fairseq
/modules
/dynamicconv_layer
/dynamicconv_layer.py
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import dynamicconv_cuda | |
import torch | |
import torch.nn.functional as F | |
from fairseq import utils | |
from fairseq.incremental_decoding_utils import with_incremental_state | |
from fairseq.modules.fairseq_dropout import FairseqDropout | |
from fairseq.modules.unfold import unfold1d | |
from torch import nn | |
from torch.autograd import Function | |
class dynamicconvFunction(Function): | |
def forward(ctx, x, weights, padding_l): | |
ctx.padding_l = padding_l | |
outputs = dynamicconv_cuda.forward(x, weights, padding_l) | |
variables = [x, weights] | |
ctx.save_for_backward(*variables) | |
return outputs[0] | |
def backward(ctx, grad_output): | |
outputs = dynamicconv_cuda.backward( | |
grad_output.contiguous(), ctx.padding_l, *ctx.saved_tensors | |
) | |
grad_input, grad_weights = outputs | |
return grad_input, grad_weights, None | |
class DynamicconvLayer(nn.Module): | |
def __init__( | |
self, | |
input_size, | |
kernel_size=1, | |
padding_l=None, | |
weight_softmax=False, | |
num_heads=1, | |
weight_dropout=0.0, | |
bias=False, | |
renorm_padding=False, | |
conv_bias=False, | |
query_size=None, | |
): | |
super(DynamicconvLayer, self).__init__() | |
self.input_size = input_size | |
self.query_size = input_size if query_size is None else query_size | |
self.kernel_size = kernel_size | |
self.padding_l = padding_l | |
self.num_heads = num_heads | |
self.weight_softmax = weight_softmax | |
self.weight_dropout_module = FairseqDropout( | |
weight_dropout, module_name=self.__class__.__name__ | |
) | |
self.renorm_padding = renorm_padding | |
self.bias = bias | |
self.weight_linear = nn.Linear(input_size, num_heads * kernel_size, bias) | |
if conv_bias: | |
self.conv_bias = nn.Parameter(torch.Tensor(input_size)) | |
else: | |
self.conv_bias = None | |
self.reset_parameters() | |
def reset_parameters(self): | |
nn.init.xavier_uniform_(self.weight_linear.weight) | |
if self.conv_bias is not None: | |
nn.init.constant_(self.conv_bias, 0.0) | |
nn.init.constant_(self.weight_linaer.bias, 0.0) | |
def forward(self, x, incremental_state=None, query=None, unfold=None): | |
T, B, C = x.size() | |
K, H = self.kernel_size, self.num_heads | |
# R = C // H | |
# during inference time, incremental BMM is faster | |
if incremental_state is not None: | |
unfold = ( | |
x.size(0) > 512 if unfold is None else unfold | |
) # use unfold mode as default for long sequence to save memory | |
unfold = unfold or (incremental_state is not None) | |
assert query is None | |
if query is None: | |
query = x | |
if unfold: | |
output = self._forward_unfolded(x, incremental_state, query) | |
else: | |
output = self._forward_expanded(x, incremental_state, query) | |
if self.conv_bias is not None: | |
output = output + self.conv_bias.view(1, 1, -1) | |
return output | |
# during training time, use CUDA kernel | |
else: | |
weight = self.weight_linear(x).view(T, B, H, K) | |
if self.weight_softmax: | |
weight = F.softmax(weight, dim=-1) | |
if self.weight_dropout_module.p: | |
weight = self.weight_dropout_module(weight) | |
weight = weight.permute(1, 2, 3, 0).contiguous() | |
self.filters = weight | |
x = x.permute(1, 2, 0).contiguous() | |
output = dynamicconvFunction.apply(x, weight, self.padding_l).permute( | |
2, 0, 1 | |
) | |
if self.conv_bias is not None: | |
output = output + self.conv_bias.view(1, 1, -1) | |
return output | |
def reorder_incremental_state(self, incremental_state, new_order): | |
input_buffer = self._get_input_buffer(incremental_state) | |
if input_buffer is not None: | |
input_buffer = input_buffer.index_select(1, new_order) | |
self._set_input_buffer(incremental_state, input_buffer) | |
def _get_input_buffer(self, incremental_state): | |
return utils.get_incremental_state(self, incremental_state, "input_buffer") | |
def _set_input_buffer(self, incremental_state, new_buffer): | |
return utils.set_incremental_state( | |
self, incremental_state, "input_buffer", new_buffer | |
) | |
def _forward_unfolded(self, x, incremental_state, query): | |
"""The conventional implementation of convolutions. | |
Unfolding the input by having a window shifting to the right.""" | |
T, B, C = x.size() | |
K, H = self.kernel_size, self.num_heads | |
R = C // H | |
assert R * H == C == self.input_size | |
weight = self.weight_linear(query).view(T * B * H, -1) | |
# renorm_padding is only implemented in _forward_expanded | |
assert not self.renorm_padding or incremental_state is not None | |
if incremental_state is not None: | |
input_buffer = self._get_input_buffer(incremental_state) | |
if input_buffer is None: | |
input_buffer = x.new() | |
x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3) | |
if self.kernel_size > 1: | |
self._set_input_buffer( | |
incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :] | |
) | |
x_unfold = x_unfold.view(T * B * H, R, -1) | |
else: | |
padding_l = self.padding_l | |
if K > T and padding_l == K - 1: | |
weight = weight.narrow(1, K - T, T) | |
K, padding_l = T, T - 1 | |
# unfold the input: T x B x C --> T' x B x C x K | |
x_unfold = unfold1d(x, K, padding_l, 0) | |
x_unfold = x_unfold.view(T * B * H, R, K) | |
if self.weight_softmax and not self.renorm_padding: | |
weight = F.softmax(weight, dim=1) | |
weight = weight.narrow(1, 0, K) | |
if incremental_state is not None: | |
weight = weight[:, -x_unfold.size(2) :] | |
K = weight.size(1) | |
if self.weight_softmax and self.renorm_padding: | |
weight = F.softmax(weight, dim=1) | |
weight = self.weight_dropout_module(weight, inplace=False) | |
output = torch.bmm(x_unfold, weight.unsqueeze(2)) # T*B*H x R x 1 | |
output = output.view(T, B, C) | |
return output | |
def _forward_expanded(self, x, incremental_stat, query): | |
"""Turn the convolution filters into band matrices and do matrix multiplication. | |
This is faster when the sequence is short, but less memory efficient. | |
This is not used in the decoder during inference. | |
""" | |
T, B, C = x.size() | |
K, H = self.kernel_size, self.num_heads | |
R = C // H | |
assert R * H == C == self.input_size | |
weight = self.weight_linear(query).view(T * B * H, -1) | |
if not self.renorm_padding: | |
if self.weight_softmax: | |
weight = F.softmax(weight, dim=1) | |
weight = self.weight_dropout_module(weight, inplace=False) | |
weight = weight.narrow(1, 0, K).contiguous() | |
weight = weight.view(T, B * H, K).transpose(0, 1) | |
x = x.view(T, B * H, R).transpose(0, 1) | |
if self.weight_softmax and self.renorm_padding: | |
# turn the convolution filters into band matrices | |
weight_expanded = weight.new(B * H, T, T + K - 1).fill_(float("-inf")) | |
weight_expanded.as_strided( | |
(B * H, T, K), (T * (T + K - 1), T + K, 1) | |
).copy_(weight) | |
weight_expanded = weight_expanded.narrow(2, self.padding_l, T) | |
# normalize the weight over valid positions like self-attention | |
weight_expanded = F.softmax(weight_expanded, dim=2) | |
weight_expanded = self.weight_dropout_module(weight_expanded, inplace=False) | |
else: | |
P = self.padding_l | |
# For efficiency, we cut the kernel size and reduce the padding when the kernel is larger than the length | |
if K > T and P == K - 1: | |
weight = weight.narrow(2, K - T, T) | |
K, P = T, T - 1 | |
# turn the convolution filters into band matrices | |
weight_expanded = weight.new_zeros(B * H, T, T + K - 1, requires_grad=False) | |
weight_expanded.as_strided( | |
(B * H, T, K), (T * (T + K - 1), T + K, 1) | |
).copy_(weight) | |
weight_expanded = weight_expanded.narrow(2, P, T) # B*H x T x T | |
output = torch.bmm(weight_expanded, x) | |
output = output.transpose(0, 1).contiguous().view(T, B, C) | |
return output | |