Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
from torch import nn | |
from torch.nn.modules.utils import _single | |
from torch import Tensor | |
class ConvTBC(torch.nn.Module): | |
"""1D convolution over an input of shape (time x batch x channel) | |
The implementation uses gemm to perform the convolution. This implementation | |
is faster than cuDNN for small kernel sizes. | |
""" | |
def __init__(self, in_channels, out_channels, kernel_size, padding=0): | |
super(ConvTBC, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = _single(kernel_size) | |
self.padding = _single(padding) | |
self.weight = torch.nn.Parameter( | |
torch.Tensor(self.kernel_size[0], in_channels, out_channels) | |
) | |
self.bias = torch.nn.Parameter(torch.Tensor(out_channels)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
nn.init.xavier_normal_(self.weight) | |
nn.init.zeros_(self.bias) | |
def conv_tbc(self, input: Tensor): | |
return torch.conv_tbc( | |
input.contiguous(), self.weight, self.bias, self.padding[0] | |
) | |
def forward(self, input: Tensor): | |
return self.conv_tbc(input) | |
def __repr__(self): | |
s = ( | |
"{name}({in_channels}, {out_channels}, kernel_size={kernel_size}" | |
", padding={padding}" | |
) | |
if self.bias is None: | |
s += ", bias=False" | |
s += ")" | |
return s.format(name=self.__class__.__name__, **self.__dict__) | |