Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
class BeamableMM(nn.Module): | |
"""This module provides an optimized MM for beam decoding with attention. | |
It leverage the fact that the source-side of the input is replicated beam | |
times and the target-side of the input is of width one. This layer speeds up | |
inference by replacing the inputs {(bsz x 1 x nhu), (bsz x sz2 x nhu)} | |
with smaller inputs {(bsz/beam x beam x nhu), (bsz/beam x sz2 x nhu)}. | |
""" | |
def __init__(self, beam_size=None): | |
super(BeamableMM, self).__init__() | |
self.beam_size = beam_size | |
def forward(self, input1, input2): | |
if ( | |
not self.training | |
and self.beam_size is not None # test mode | |
and input1.dim() == 3 # beam size is set | |
and input1.size(1) # only support batched input | |
== 1 # single time step update | |
): | |
bsz, beam = input1.size(0), self.beam_size | |
# bsz x 1 x nhu --> bsz/beam x beam x nhu | |
input1 = input1[:, 0, :].unfold(0, beam, beam).transpose(2, 1) | |
# bsz x sz2 x nhu --> bsz/beam x sz2 x nhu | |
input2 = input2.unfold(0, beam, beam)[:, :, :, 0] | |
# use non batched operation if bsz = beam | |
if input1.size(0) == 1: | |
output = torch.mm(input1[0, :, :], input2[0, :, :]) | |
else: | |
output = input1.bmm(input2) | |
return output.view(bsz, 1, -1) | |
else: | |
return input1.bmm(input2) | |
def set_beam_size(self, beam_size): | |
self.beam_size = beam_size | |