Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
from dataclasses import dataclass, field | |
from typing import List, Tuple | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from fairseq import utils | |
from fairseq.data.data_utils import compute_mask_indices | |
from fairseq.dataclass import ChoiceEnum, FairseqDataclass | |
from fairseq.models import BaseFairseqModel, register_model | |
from fairseq.modules import ( | |
Fp32GroupNorm, | |
Fp32LayerNorm, | |
GradMultiply, | |
GumbelVectorQuantizer, | |
LayerNorm, | |
MultiheadAttention, | |
SamePad, | |
TransposeLast, | |
) | |
from fairseq.modules.transformer_sentence_encoder import init_bert_params | |
from fairseq.utils import buffered_arange | |
EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"]) | |
MASKING_DISTRIBUTION_CHOICES = ChoiceEnum(["static", "uniform", "normal", "poisson"]) | |
class Wav2Vec2Config(FairseqDataclass): | |
extractor_mode: EXTRACTOR_MODE_CHOICES = field( | |
default="default", | |
metadata={ | |
"help": "mode for feature extractor. default has a single group norm with d " | |
"groups in the first conv block, whereas layer_norm has layer norms in " | |
"every block (meant to use with normalize=True)" | |
}, | |
) | |
encoder_layers: int = field( | |
default=12, metadata={"help": "num encoder layers in the transformer"} | |
) | |
encoder_embed_dim: int = field( | |
default=768, metadata={"help": "encoder embedding dimension"} | |
) | |
encoder_ffn_embed_dim: int = field( | |
default=3072, metadata={"help": "encoder embedding dimension for FFN"} | |
) | |
encoder_attention_heads: int = field( | |
default=12, metadata={"help": "num encoder attention heads"} | |
) | |
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( | |
default="gelu", metadata={"help": "activation function to use"} | |
) | |
# dropouts | |
dropout: float = field( | |
default=0.1, metadata={"help": "dropout probability for the transformer"} | |
) | |
attention_dropout: float = field( | |
default=0.1, metadata={"help": "dropout probability for attention weights"} | |
) | |
activation_dropout: float = field( | |
default=0.0, metadata={"help": "dropout probability after activation in FFN"} | |
) | |
encoder_layerdrop: float = field( | |
default=0.0, metadata={"help": "probability of dropping a tarnsformer layer"} | |
) | |
dropout_input: float = field( | |
default=0.0, | |
metadata={"help": "dropout to apply to the input (after feat extr)"}, | |
) | |
dropout_features: float = field( | |
default=0.0, | |
metadata={"help": "dropout to apply to the features (after feat extr)"}, | |
) | |
final_dim: int = field( | |
default=0, | |
metadata={ | |
"help": "project final representations and targets to this many dimensions." | |
"set to encoder_embed_dim is <= 0" | |
}, | |
) | |
layer_norm_first: bool = field( | |
default=False, metadata={"help": "apply layernorm first in the transformer"} | |
) | |
conv_feature_layers: str = field( | |
default="[(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512,2,2)] + [(512,2,2)]", | |
metadata={ | |
"help": "string describing convolutional feature extraction layers in form of a python list that contains " | |
"[(dim, kernel_size, stride), ...]" | |
}, | |
) | |
conv_bias: bool = field( | |
default=False, metadata={"help": "include bias in conv encoder"} | |
) | |
logit_temp: float = field( | |
default=0.1, metadata={"help": "temperature to divide logits by"} | |
) | |
quantize_targets: bool = field( | |
default=False, metadata={"help": "use quantized targets"} | |
) | |
quantize_input: bool = field( | |
default=False, metadata={"help": "use quantized inputs"} | |
) | |
same_quantizer: bool = field( | |
default=False, metadata={"help": "use same quantizer for inputs and targets"} | |
) | |
target_glu: bool = field( | |
default=False, metadata={"help": "adds projection + glu to targets"} | |
) | |
feature_grad_mult: float = field( | |
default=1.0, metadata={"help": "multiply feature extractor var grads by this"} | |
) | |
latent_vars: int = field( | |
default=320, | |
metadata={"help": "number of latent variables V in each group of the codebook"}, | |
) | |
latent_groups: int = field( | |
default=2, | |
metadata={"help": "number of groups G of latent variables in the codebook"}, | |
) | |
latent_dim: int = field( | |
default=0, | |
metadata={ | |
"help": "if > 0, uses this dimensionality for latent variables. " | |
"otherwise uses final_dim / latent_groups" | |
}, | |
) | |
# masking | |
mask_length: int = field(default=10, metadata={"help": "mask length"}) | |
mask_prob: float = field( | |
default=0.65, metadata={"help": "probability of replacing a token with mask"} | |
) | |
mask_selection: MASKING_DISTRIBUTION_CHOICES = field( | |
default="static", metadata={"help": "how to choose mask length"} | |
) | |
mask_other: float = field( | |
default=0, | |
metadata={ | |
"help": "secondary mask argument (used for more complex distributions), " | |
"see help in compute_mask_indices" | |
}, | |
) | |
no_mask_overlap: bool = field( | |
default=False, metadata={"help": "whether to allow masks to overlap"} | |
) | |
mask_min_space: int = field( | |
default=1, | |
metadata={"help": "min space between spans (if no overlap is enabled)"}, | |
) | |
# channel masking | |
mask_channel_length: int = field( | |
default=10, metadata={"help": "length of the mask for features (channels)"} | |
) | |
mask_channel_prob: float = field( | |
default=0.0, metadata={"help": "probability of replacing a feature with 0"} | |
) | |
mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( | |
default="static", | |
metadata={"help": "how to choose mask length for channel masking"}, | |
) | |
mask_channel_other: float = field( | |
default=0, | |
metadata={ | |
"help": "secondary mask argument (used for more complex distributions), " | |
"see help in compute_mask_indicesh" | |
}, | |
) | |
no_mask_channel_overlap: bool = field( | |
default=False, metadata={"help": "whether to allow channel masks to overlap"} | |
) | |
mask_channel_min_space: int = field( | |
default=1, | |
metadata={"help": "min space between spans (if no overlap is enabled)"}, | |
) | |
# negative selection | |
num_negatives: int = field( | |
default=100, | |
metadata={"help": "number of negative examples from the same sample"}, | |
) | |
negatives_from_everywhere: bool = field( | |
default=False, | |
metadata={"help": "sample negatives from everywhere, not just masked states"}, | |
) | |
cross_sample_negatives: int = field( | |
default=0, metadata={"help": "number of negative examples from the any sample"} | |
) | |
codebook_negatives: int = field( | |
default=0, metadata={"help": "number of negative examples codebook"} | |
) | |
# positional embeddings | |
conv_pos: int = field( | |
default=128, | |
metadata={"help": "number of filters for convolutional positional embeddings"}, | |
) | |
conv_pos_groups: int = field( | |
default=16, | |
metadata={"help": "number of groups for convolutional positional embedding"}, | |
) | |
latent_temp: Tuple[float, float, float] = field( | |
default=(2, 0.5, 0.999995), | |
metadata={ | |
"help": "temperature for latent variable sampling. " | |
"can be tuple of 3 values (start, end, decay)" | |
}, | |
) | |
class Wav2Vec2Model(BaseFairseqModel): | |
def __init__(self, cfg: Wav2Vec2Config): | |
super().__init__() | |
self.cfg = cfg | |
feature_enc_layers = eval(cfg.conv_feature_layers) | |
self.embed = feature_enc_layers[-1][0] | |
self.feature_extractor = ConvFeatureExtractionModel( | |
conv_layers=feature_enc_layers, | |
dropout=0.0, | |
mode=cfg.extractor_mode, | |
conv_bias=cfg.conv_bias, | |
) | |
self.post_extract_proj = ( | |
nn.Linear(self.embed, cfg.encoder_embed_dim) | |
if self.embed != cfg.encoder_embed_dim and not cfg.quantize_input | |
else None | |
) | |
self.mask_prob = cfg.mask_prob | |
self.mask_selection = cfg.mask_selection | |
self.mask_other = cfg.mask_other | |
self.mask_length = cfg.mask_length | |
self.no_mask_overlap = cfg.no_mask_overlap | |
self.mask_min_space = cfg.mask_min_space | |
self.mask_channel_prob = cfg.mask_channel_prob | |
self.mask_channel_selection = cfg.mask_channel_selection | |
self.mask_channel_other = cfg.mask_channel_other | |
self.mask_channel_length = cfg.mask_channel_length | |
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap | |
self.mask_channel_min_space = cfg.mask_channel_min_space | |
self.dropout_input = nn.Dropout(cfg.dropout_input) | |
self.dropout_features = nn.Dropout(cfg.dropout_features) | |
self.feature_grad_mult = cfg.feature_grad_mult | |
self.quantizer = None | |
self.input_quantizer = None | |
self.n_negatives = cfg.num_negatives | |
self.cross_sample_negatives = cfg.cross_sample_negatives | |
self.codebook_negatives = cfg.codebook_negatives | |
self.negatives_from_everywhere = cfg.negatives_from_everywhere | |
self.logit_temp = cfg.logit_temp | |
final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim | |
if cfg.quantize_targets: | |
vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else final_dim | |
self.quantizer = GumbelVectorQuantizer( | |
dim=self.embed, | |
num_vars=cfg.latent_vars, | |
temp=cfg.latent_temp, | |
groups=cfg.latent_groups, | |
combine_groups=False, | |
vq_dim=vq_dim, | |
time_first=True, | |
) | |
self.project_q = nn.Linear(vq_dim, final_dim) | |
else: | |
self.project_q = nn.Linear(self.embed, final_dim) | |
if cfg.quantize_input: | |
if cfg.same_quantizer and self.quantizer is not None: | |
vq_dim = final_dim | |
self.input_quantizer = self.quantizer | |
else: | |
vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else cfg.encoder_embed_dim | |
self.input_quantizer = GumbelVectorQuantizer( | |
dim=self.embed, | |
num_vars=cfg.latent_vars, | |
temp=cfg.latent_temp, | |
groups=cfg.latent_groups, | |
combine_groups=False, | |
vq_dim=vq_dim, | |
time_first=True, | |
) | |
self.project_inp = nn.Linear(vq_dim, cfg.encoder_embed_dim) | |
self.mask_emb = nn.Parameter( | |
torch.FloatTensor(cfg.encoder_embed_dim).uniform_() | |
) | |
self.encoder = TransformerEncoder(cfg) | |
self.layer_norm = LayerNorm(self.embed) | |
self.target_glu = None | |
if cfg.target_glu: | |
self.target_glu = nn.Sequential( | |
nn.Linear(final_dim, final_dim * 2), nn.GLU() | |
) | |
self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim) | |
def upgrade_state_dict_named(self, state_dict, name): | |
super().upgrade_state_dict_named(state_dict, name) | |
"""Upgrade a (possibly old) state dict for new versions of fairseq.""" | |
return state_dict | |
def build_model(cls, cfg: Wav2Vec2Config, task=None): | |
"""Build a new model instance.""" | |
return cls(cfg) | |
def apply_mask(self, x, padding_mask): | |
B, T, C = x.shape | |
if self.mask_prob > 0: | |
mask_indices = compute_mask_indices( | |
(B, T), | |
padding_mask, | |
self.mask_prob, | |
self.mask_length, | |
self.mask_selection, | |
self.mask_other, | |
min_masks=2, | |
no_overlap=self.no_mask_overlap, | |
min_space=self.mask_min_space, | |
) | |
mask_indices = torch.from_numpy(mask_indices).to(x.device) | |
x[mask_indices] = self.mask_emb | |
else: | |
mask_indices = None | |
if self.mask_channel_prob > 0: | |
mask_channel_indices = compute_mask_indices( | |
(B, C), | |
None, | |
self.mask_channel_prob, | |
self.mask_channel_length, | |
self.mask_channel_selection, | |
self.mask_channel_other, | |
no_overlap=self.no_mask_channel_overlap, | |
min_space=self.mask_channel_min_space, | |
) | |
mask_channel_indices = ( | |
torch.from_numpy(mask_channel_indices) | |
.to(x.device) | |
.unsqueeze(1) | |
.expand(-1, T, -1) | |
) | |
x[mask_channel_indices] = 0 | |
return x, mask_indices | |
def sample_negatives(self, y, num): | |
if self.n_negatives == 0 and self.cross_sample_negatives == 0: | |
return y.new(0) | |
bsz, tsz, fsz = y.shape | |
y = y.view(-1, fsz) # BTC => (BxT)C | |
cross_high = tsz * bsz | |
high = tsz | |
with torch.no_grad(): | |
assert high > 1, f"{bsz,tsz,fsz}" | |
if self.n_negatives > 0: | |
tszs = ( | |
buffered_arange(num) | |
.unsqueeze(-1) | |
.expand(-1, self.n_negatives) | |
.flatten() | |
) | |
neg_idxs = torch.randint( | |
low=0, high=high - 1, size=(bsz, self.n_negatives * num) | |
) | |
neg_idxs[neg_idxs >= tszs] += 1 | |
if self.cross_sample_negatives > 0: | |
tszs = ( | |
buffered_arange(num) | |
.unsqueeze(-1) | |
.expand(-1, self.cross_sample_negatives) | |
.flatten() | |
) | |
cross_neg_idxs = torch.randint( | |
low=0, | |
high=cross_high - 1, | |
size=(bsz, self.cross_sample_negatives * num), | |
) | |
cross_neg_idxs[cross_neg_idxs >= tszs] += 1 | |
if self.n_negatives > 0: | |
for i in range(1, bsz): | |
neg_idxs[i] += i * high | |
else: | |
neg_idxs = cross_neg_idxs | |
if self.cross_sample_negatives > 0 and self.n_negatives > 0: | |
neg_idxs = torch.cat([neg_idxs, cross_neg_idxs], dim=1) | |
negs = y[neg_idxs.view(-1)] | |
negs = negs.view( | |
bsz, num, self.n_negatives + self.cross_sample_negatives, fsz | |
).permute( | |
2, 0, 1, 3 | |
) # to NxBxTxC | |
return negs, neg_idxs | |
def compute_preds(self, x, y, negatives): | |
neg_is_pos = (y == negatives).all(-1) | |
y = y.unsqueeze(0) | |
targets = torch.cat([y, negatives], dim=0) | |
logits = torch.cosine_similarity(x.float(), targets.float(), dim=-1).type_as(x) | |
logits /= self.logit_temp | |
if neg_is_pos.any(): | |
logits[1:][neg_is_pos] = float("-inf") | |
return logits | |
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): | |
""" | |
Computes the output length of the convolutional layers | |
""" | |
def _conv_out_length(input_length, kernel_size, stride): | |
return torch.floor((input_length - kernel_size) / stride + 1) | |
conv_cfg_list = eval(self.cfg.conv_feature_layers) | |
for i in range(len(conv_cfg_list)): | |
input_lengths = _conv_out_length(input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2]) | |
return input_lengths.to(torch.long) | |
def forward(self, source, padding_mask=None, mask=True, features_only=False): | |
if self.feature_grad_mult > 0: | |
features = self.feature_extractor(source) | |
if self.feature_grad_mult != 1.0: | |
features = GradMultiply.apply(features, self.feature_grad_mult) | |
else: | |
with torch.no_grad(): | |
features = self.feature_extractor(source) | |
features_pen = features.float().pow(2).mean() | |
features = features.transpose(1, 2) | |
features = self.layer_norm(features) | |
unmasked_features = features.clone() | |
if padding_mask is not None: | |
input_lengths = (1 - padding_mask.long()).sum(-1) | |
# apply conv formula to get real output_lengths | |
output_lengths = self._get_feat_extract_output_lengths(input_lengths) | |
padding_mask = torch.zeros( | |
features.shape[:2], dtype=features.dtype, device=features.device | |
) | |
# these two operations makes sure that all values | |
# before the output lengths indices are attended to | |
padding_mask[(torch.arange(padding_mask.shape[0], device=padding_mask.device), output_lengths - 1)] = 1 | |
padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])).bool() | |
if self.post_extract_proj is not None: | |
features = self.post_extract_proj(features) | |
features = self.dropout_input(features) | |
unmasked_features = self.dropout_features(unmasked_features) | |
num_vars = None | |
code_ppl = None | |
prob_ppl = None | |
curr_temp = None | |
if self.input_quantizer: | |
q = self.input_quantizer(features, produce_targets=False) | |
features = q["x"] | |
num_vars = q["num_vars"] | |
code_ppl = q["code_perplexity"] | |
prob_ppl = q["prob_perplexity"] | |
curr_temp = q["temp"] | |
features = self.project_inp(features) | |
if mask: | |
x, mask_indices = self.apply_mask(features, padding_mask) | |
if mask_indices is not None: | |
y = unmasked_features[mask_indices].view( | |
unmasked_features.size(0), -1, unmasked_features.size(-1) | |
) | |
else: | |
y = unmasked_features | |
else: | |
x = features | |
y = unmasked_features | |
mask_indices = None | |
x = self.encoder(x, padding_mask=padding_mask) | |
if features_only: | |
return {"x": x, "padding_mask": padding_mask} | |
if self.quantizer: | |
q = self.quantizer(y, produce_targets=False) | |
y = q["x"] | |
num_vars = q["num_vars"] | |
code_ppl = q["code_perplexity"] | |
prob_ppl = q["prob_perplexity"] | |
curr_temp = q["temp"] | |
y = self.project_q(y) | |
if self.negatives_from_everywhere: | |
neg_cands, *_ = self.quantizer(unmasked_features, produce_targets=False) | |
negs, _ = self.sample_negatives(neg_cands, y.size(1)) | |
negs = self.project_q(negs) | |
else: | |
negs, _ = self.sample_negatives(y, y.size(1)) | |
if self.codebook_negatives > 0: | |
cb_negs = self.quantizer.sample_from_codebook( | |
y.size(0) * y.size(1), self.codebook_negatives | |
) | |
cb_negs = cb_negs.view( | |
self.codebook_negatives, y.size(0), y.size(1), -1 | |
) # order doesnt matter | |
cb_negs = self.project_q(cb_negs) | |
negs = torch.cat([negs, cb_negs], dim=0) | |
else: | |
y = self.project_q(y) | |
if self.negatives_from_everywhere: | |
negs, _ = self.sample_negatives(unmasked_features, y.size(1)) | |
negs = self.project_q(negs) | |
else: | |
negs, _ = self.sample_negatives(y, y.size(1)) | |
x = x[mask_indices].view(x.size(0), -1, x.size(-1)) | |
if self.target_glu: | |
y = self.target_glu(y) | |
negs = self.target_glu(negs) | |
x = self.final_proj(x) | |
x = self.compute_preds(x, y, negs) | |
result = {"x": x, "padding_mask": padding_mask, "features_pen": features_pen} | |
if prob_ppl is not None: | |
result["prob_perplexity"] = prob_ppl | |
result["code_perplexity"] = code_ppl | |
result["num_vars"] = num_vars | |
result["temp"] = curr_temp | |
return result | |
def quantize(self, x): | |
assert self.quantizer is not None | |
x = self.feature_extractor(x) | |
x = x.transpose(1, 2) | |
x = self.layer_norm(x) | |
return self.quantizer.forward_idx(x) | |
def extract_features(self, source, padding_mask, mask=False): | |
res = self.forward(source, padding_mask, mask=mask, features_only=True) | |
return res["x"], res["padding_mask"] | |
def get_logits(self, net_output): | |
logits = net_output["x"] | |
logits = logits.transpose(0, 2) | |
logits = logits.reshape(-1, logits.size(-1)) | |
return logits | |
def get_targets(self, sample, net_output, expand_steps=True): | |
x = net_output["x"] | |
return x.new_zeros(x.size(1) * x.size(2), dtype=torch.long) | |
def get_extra_losses(self, net_output): | |
pen = [] | |
if "prob_perplexity" in net_output: | |
pen.append( | |
(net_output["num_vars"] - net_output["prob_perplexity"]) | |
/ net_output["num_vars"] | |
) | |
if "features_pen" in net_output: | |
pen.append(net_output["features_pen"]) | |
return pen | |
def remove_pretraining_modules(self): | |
self.quantizer = None | |
self.project_q = None | |
self.target_glu = None | |
self.final_proj = None | |
class ConvFeatureExtractionModel(nn.Module): | |
def __init__( | |
self, | |
conv_layers: List[Tuple[int, int, int]], | |
dropout: float = 0.0, | |
mode: str = "default", | |
conv_bias: bool = False, | |
): | |
super().__init__() | |
assert mode in {"default", "layer_norm"} | |
def block( | |
n_in, | |
n_out, | |
k, | |
stride, | |
is_layer_norm=False, | |
is_group_norm=False, | |
conv_bias=False, | |
): | |
def make_conv(): | |
conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias) | |
nn.init.kaiming_normal_(conv.weight) | |
return conv | |
assert ( | |
is_layer_norm and is_group_norm | |
) == False, "layer norm and group norm are exclusive" | |
if is_layer_norm: | |
return nn.Sequential( | |
make_conv(), | |
nn.Dropout(p=dropout), | |
nn.Sequential( | |
TransposeLast(), | |
Fp32LayerNorm(dim, elementwise_affine=True), | |
TransposeLast(), | |
), | |
nn.GELU(), | |
) | |
elif is_group_norm: | |
return nn.Sequential( | |
make_conv(), | |
nn.Dropout(p=dropout), | |
Fp32GroupNorm(dim, dim, affine=True), | |
nn.GELU(), | |
) | |
else: | |
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU()) | |
in_d = 1 | |
self.conv_layers = nn.ModuleList() | |
for i, cl in enumerate(conv_layers): | |
assert len(cl) == 3, "invalid conv definition: " + str(cl) | |
(dim, k, stride) = cl | |
self.conv_layers.append( | |
block( | |
in_d, | |
dim, | |
k, | |
stride, | |
is_layer_norm=mode == "layer_norm", | |
is_group_norm=mode == "default" and i == 0, | |
conv_bias=conv_bias, | |
) | |
) | |
in_d = dim | |
def forward(self, x): | |
# BxT -> BxCxT | |
x = x.unsqueeze(1) | |
for conv in self.conv_layers: | |
x = conv(x) | |
return x | |
class TransformerEncoder(nn.Module): | |
def __init__(self, args): | |
super().__init__() | |
self.dropout = args.dropout | |
self.embedding_dim = args.encoder_embed_dim | |
self.pos_conv = nn.Conv1d( | |
self.embedding_dim, | |
self.embedding_dim, | |
kernel_size=args.conv_pos, | |
padding=args.conv_pos // 2, | |
groups=args.conv_pos_groups, | |
) | |
dropout = 0 | |
std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim)) | |
nn.init.normal_(self.pos_conv.weight, mean=0, std=std) | |
nn.init.constant_(self.pos_conv.bias, 0) | |
self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2) | |
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU()) | |
self.layers = nn.ModuleList( | |
[ | |
TransformerSentenceEncoderLayer( | |
embedding_dim=self.embedding_dim, | |
ffn_embedding_dim=args.encoder_ffn_embed_dim, | |
num_attention_heads=args.encoder_attention_heads, | |
dropout=self.dropout, | |
attention_dropout=args.attention_dropout, | |
activation_dropout=args.activation_dropout, | |
activation_fn=args.activation_fn, | |
layer_norm_first=args.layer_norm_first, | |
) | |
for _ in range(args.encoder_layers) | |
] | |
) | |
self.layer_norm_first = args.layer_norm_first | |
self.layer_norm = LayerNorm(self.embedding_dim) | |
self.layerdrop = args.encoder_layerdrop | |
self.apply(init_bert_params) | |
def forward(self, x, padding_mask=None): | |
x = self.extract_features(x, padding_mask) | |
if self.layer_norm_first: | |
x = self.layer_norm(x) | |
return x | |
def extract_features(self, x, padding_mask=None): | |
if padding_mask is not None: | |
x[padding_mask] = 0 | |
x_conv = self.pos_conv(x.transpose(1, 2)) | |
x_conv = x_conv.transpose(1, 2) | |
x += x_conv | |
if not self.layer_norm_first: | |
x = self.layer_norm(x) | |
x = F.dropout(x, p=self.dropout, training=self.training) | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) | |
layer_results = [] | |
for i, layer in enumerate(self.layers): | |
dropout_probability = np.random.random() | |
if not self.training or (dropout_probability > self.layerdrop): | |
x, z = layer(x, self_attn_padding_mask=padding_mask, need_weights=False) | |
layer_results.append(x) | |
# T x B x C -> B x T x C | |
x = x.transpose(0, 1) | |
return x | |
def max_positions(self): | |
"""Maximum output length supported by the encoder.""" | |
return self.args.max_positions | |
def upgrade_state_dict_named(self, state_dict, name): | |
"""Upgrade a (possibly old) state dict for new versions of fairseq.""" | |
return state_dict | |
class TransformerSentenceEncoderLayer(nn.Module): | |
""" | |
Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained | |
models. | |
""" | |
def __init__( | |
self, | |
embedding_dim: float = 768, | |
ffn_embedding_dim: float = 3072, | |
num_attention_heads: float = 8, | |
dropout: float = 0.1, | |
attention_dropout: float = 0.1, | |
activation_dropout: float = 0.1, | |
activation_fn: str = "relu", | |
layer_norm_first: bool = False, | |
) -> None: | |
super().__init__() | |
# Initialize parameters | |
self.embedding_dim = embedding_dim | |
self.dropout = dropout | |
self.activation_dropout = activation_dropout | |
# Initialize blocks | |
self.activation_fn = utils.get_activation_fn(activation_fn) | |
self.self_attn = MultiheadAttention( | |
self.embedding_dim, | |
num_attention_heads, | |
dropout=attention_dropout, | |
self_attention=True, | |
) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(self.activation_dropout) | |
self.dropout3 = nn.Dropout(dropout) | |
self.layer_norm_first = layer_norm_first | |
# layer norm associated with the self attention layer | |
self.self_attn_layer_norm = LayerNorm(self.embedding_dim) | |
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) | |
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) | |
# layer norm associated with the position wise feed-forward NN | |
self.final_layer_norm = LayerNorm(self.embedding_dim) | |
def forward( | |
self, | |
x: torch.Tensor, | |
self_attn_mask: torch.Tensor = None, | |
self_attn_padding_mask: torch.Tensor = None, | |
need_weights: bool = False, | |
att_args=None, | |
): | |
""" | |
LayerNorm is applied either before or after the self-attention/ffn | |
modules similar to the original Transformer imlementation. | |
""" | |
residual = x | |
if self.layer_norm_first: | |
x = self.self_attn_layer_norm(x) | |
x, attn = self.self_attn( | |
query=x, | |
key=x, | |
value=x, | |
key_padding_mask=self_attn_padding_mask, | |
need_weights=False, | |
attn_mask=self_attn_mask, | |
) | |
x = self.dropout1(x) | |
x = residual + x | |
residual = x | |
x = self.final_layer_norm(x) | |
x = self.activation_fn(self.fc1(x)) | |
x = self.dropout2(x) | |
x = self.fc2(x) | |
x = self.dropout3(x) | |
x = residual + x | |
else: | |
x, attn = self.self_attn( | |
query=x, | |
key=x, | |
value=x, | |
key_padding_mask=self_attn_padding_mask, | |
need_weights=need_weights, | |
) | |
x = self.dropout1(x) | |
x = residual + x | |
x = self.self_attn_layer_norm(x) | |
residual = x | |
x = self.activation_fn(self.fc1(x)) | |
x = self.dropout2(x) | |
x = self.fc2(x) | |
x = self.dropout3(x) | |
x = residual + x | |
x = self.final_layer_norm(x) | |
return x, attn | |