Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import logging | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from fairseq import utils | |
from fairseq.models import ( | |
FairseqEncoder, | |
FairseqEncoderModel, | |
register_model, | |
register_model_architecture, | |
) | |
from fairseq.modules import ( | |
LayerNorm, | |
SinusoidalPositionalEmbedding, | |
TransformerSentenceEncoder, | |
) | |
from fairseq.modules.transformer_sentence_encoder import init_bert_params | |
logger = logging.getLogger(__name__) | |
class MaskedLMModel(FairseqEncoderModel): | |
""" | |
Class for training a Masked Language Model. It also supports an | |
additional sentence level prediction if the sent-loss argument is set. | |
""" | |
def __init__(self, args, encoder): | |
super().__init__(encoder) | |
self.args = args | |
# if specified then apply bert initialization on the model. We need | |
# to explictly call this to make sure that the output embeddings | |
# and projection layers are also correctly initialized | |
if getattr(args, "apply_bert_init", False): | |
self.apply(init_bert_params) | |
def add_args(parser): | |
"""Add model-specific arguments to the parser.""" | |
# Arguments related to dropout | |
parser.add_argument( | |
"--dropout", type=float, metavar="D", help="dropout probability" | |
) | |
parser.add_argument( | |
"--attention-dropout", | |
type=float, | |
metavar="D", | |
help="dropout probability for" " attention weights", | |
) | |
parser.add_argument( | |
"--act-dropout", | |
type=float, | |
metavar="D", | |
help="dropout probability after" " activation in FFN", | |
) | |
# Arguments related to hidden states and self-attention | |
parser.add_argument( | |
"--encoder-ffn-embed-dim", | |
type=int, | |
metavar="N", | |
help="encoder embedding dimension for FFN", | |
) | |
parser.add_argument( | |
"--encoder-layers", type=int, metavar="N", help="num encoder layers" | |
) | |
parser.add_argument( | |
"--encoder-attention-heads", | |
type=int, | |
metavar="N", | |
help="num encoder attention heads", | |
) | |
# Arguments related to input and output embeddings | |
parser.add_argument( | |
"--encoder-embed-dim", | |
type=int, | |
metavar="N", | |
help="encoder embedding dimension", | |
) | |
parser.add_argument( | |
"--share-encoder-input-output-embed", | |
action="store_true", | |
help="share encoder input" " and output embeddings", | |
) | |
parser.add_argument( | |
"--encoder-learned-pos", | |
action="store_true", | |
help="use learned positional embeddings in the encoder", | |
) | |
parser.add_argument( | |
"--no-token-positional-embeddings", | |
action="store_true", | |
help="if set, disables positional embeddings" " (outside self attention)", | |
) | |
parser.add_argument( | |
"--num-segment", type=int, metavar="N", help="num segment in the input" | |
) | |
parser.add_argument( | |
"--max-positions", type=int, help="number of positional embeddings to learn" | |
) | |
# Arguments related to sentence level prediction | |
parser.add_argument( | |
"--sentence-class-num", | |
type=int, | |
metavar="N", | |
help="number of classes for sentence task", | |
) | |
parser.add_argument( | |
"--sent-loss", | |
action="store_true", | |
help="if set," " calculate sentence level predictions", | |
) | |
# Arguments related to parameter initialization | |
parser.add_argument( | |
"--apply-bert-init", | |
action="store_true", | |
help="use custom param initialization for BERT", | |
) | |
# misc params | |
parser.add_argument( | |
"--activation-fn", | |
choices=utils.get_available_activation_fns(), | |
help="activation function to use", | |
) | |
parser.add_argument( | |
"--pooler-activation-fn", | |
choices=utils.get_available_activation_fns(), | |
help="Which activation function to use for pooler layer.", | |
) | |
parser.add_argument( | |
"--encoder-normalize-before", | |
action="store_true", | |
help="apply layernorm before each encoder block", | |
) | |
def forward(self, src_tokens, segment_labels=None, **kwargs): | |
return self.encoder(src_tokens, segment_labels=segment_labels, **kwargs) | |
def max_positions(self): | |
return self.encoder.max_positions | |
def build_model(cls, args, task): | |
"""Build a new model instance.""" | |
# make sure all arguments are present in older models | |
base_architecture(args) | |
if not hasattr(args, "max_positions"): | |
args.max_positions = args.tokens_per_sample | |
logger.info(args) | |
encoder = MaskedLMEncoder(args, task.dictionary) | |
return cls(args, encoder) | |
class MaskedLMEncoder(FairseqEncoder): | |
""" | |
Encoder for Masked Language Modelling. | |
""" | |
def __init__(self, args, dictionary): | |
super().__init__(dictionary) | |
self.padding_idx = dictionary.pad() | |
self.vocab_size = dictionary.__len__() | |
self.max_positions = args.max_positions | |
self.sentence_encoder = TransformerSentenceEncoder( | |
padding_idx=self.padding_idx, | |
vocab_size=self.vocab_size, | |
num_encoder_layers=args.encoder_layers, | |
embedding_dim=args.encoder_embed_dim, | |
ffn_embedding_dim=args.encoder_ffn_embed_dim, | |
num_attention_heads=args.encoder_attention_heads, | |
dropout=args.dropout, | |
attention_dropout=args.attention_dropout, | |
activation_dropout=args.act_dropout, | |
max_seq_len=self.max_positions, | |
num_segments=args.num_segment, | |
use_position_embeddings=not args.no_token_positional_embeddings, | |
encoder_normalize_before=args.encoder_normalize_before, | |
apply_bert_init=args.apply_bert_init, | |
activation_fn=args.activation_fn, | |
learned_pos_embedding=args.encoder_learned_pos, | |
) | |
self.share_input_output_embed = args.share_encoder_input_output_embed | |
self.embed_out = None | |
self.sentence_projection_layer = None | |
self.sentence_out_dim = args.sentence_class_num | |
self.lm_output_learned_bias = None | |
# Remove head is set to true during fine-tuning | |
self.load_softmax = not getattr(args, "remove_head", False) | |
self.masked_lm_pooler = nn.Linear( | |
args.encoder_embed_dim, args.encoder_embed_dim | |
) | |
self.pooler_activation = utils.get_activation_fn(args.pooler_activation_fn) | |
self.lm_head_transform_weight = nn.Linear( | |
args.encoder_embed_dim, args.encoder_embed_dim | |
) | |
self.activation_fn = utils.get_activation_fn(args.activation_fn) | |
self.layer_norm = LayerNorm(args.encoder_embed_dim) | |
self.lm_output_learned_bias = None | |
if self.load_softmax: | |
self.lm_output_learned_bias = nn.Parameter(torch.zeros(self.vocab_size)) | |
if not self.share_input_output_embed: | |
self.embed_out = nn.Linear( | |
args.encoder_embed_dim, self.vocab_size, bias=False | |
) | |
if args.sent_loss: | |
self.sentence_projection_layer = nn.Linear( | |
args.encoder_embed_dim, self.sentence_out_dim, bias=False | |
) | |
def forward(self, src_tokens, segment_labels=None, masked_tokens=None, **unused): | |
""" | |
Forward pass for Masked LM encoder. This first computes the token | |
embedding using the token embedding matrix, position embeddings (if | |
specified) and segment embeddings (if specified). | |
Here we assume that the sentence representation corresponds to the | |
output of the classification_token (see bert_task or cross_lingual_lm | |
task for more details). | |
Args: | |
- src_tokens: B x T matrix representing sentences | |
- segment_labels: B x T matrix representing segment label for tokens | |
Returns: | |
- a tuple of the following: | |
- logits for predictions in format B x T x C to be used in | |
softmax afterwards | |
- a dictionary of additional data, where 'pooled_output' contains | |
the representation for classification_token and 'inner_states' | |
is a list of internal model states used to compute the | |
predictions (similar in ELMO). 'sentence_logits' | |
is the prediction logit for NSP task and is only computed if | |
this is specified in the input arguments. | |
""" | |
inner_states, sentence_rep = self.sentence_encoder( | |
src_tokens, | |
segment_labels=segment_labels, | |
) | |
x = inner_states[-1].transpose(0, 1) | |
# project masked tokens only | |
if masked_tokens is not None: | |
x = x[masked_tokens, :] | |
x = self.layer_norm(self.activation_fn(self.lm_head_transform_weight(x))) | |
pooled_output = self.pooler_activation(self.masked_lm_pooler(sentence_rep)) | |
# project back to size of vocabulary | |
if self.share_input_output_embed and hasattr( | |
self.sentence_encoder.embed_tokens, "weight" | |
): | |
x = F.linear(x, self.sentence_encoder.embed_tokens.weight) | |
elif self.embed_out is not None: | |
x = self.embed_out(x) | |
if self.lm_output_learned_bias is not None: | |
x = x + self.lm_output_learned_bias | |
sentence_logits = None | |
if self.sentence_projection_layer: | |
sentence_logits = self.sentence_projection_layer(pooled_output) | |
return x, { | |
"inner_states": inner_states, | |
"pooled_output": pooled_output, | |
"sentence_logits": sentence_logits, | |
} | |
def max_positions(self): | |
"""Maximum output length supported by the encoder.""" | |
return self.max_positions | |
def upgrade_state_dict_named(self, state_dict, name): | |
if isinstance( | |
self.sentence_encoder.embed_positions, SinusoidalPositionalEmbedding | |
): | |
state_dict[ | |
name + ".sentence_encoder.embed_positions._float_tensor" | |
] = torch.FloatTensor(1) | |
if not self.load_softmax: | |
for k in list(state_dict.keys()): | |
if ( | |
"embed_out.weight" in k | |
or "sentence_projection_layer.weight" in k | |
or "lm_output_learned_bias" in k | |
): | |
del state_dict[k] | |
return state_dict | |
def base_architecture(args): | |
args.dropout = getattr(args, "dropout", 0.1) | |
args.attention_dropout = getattr(args, "attention_dropout", 0.1) | |
args.act_dropout = getattr(args, "act_dropout", 0.0) | |
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) | |
args.encoder_layers = getattr(args, "encoder_layers", 6) | |
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) | |
args.share_encoder_input_output_embed = getattr( | |
args, "share_encoder_input_output_embed", False | |
) | |
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) | |
args.no_token_positional_embeddings = getattr( | |
args, "no_token_positional_embeddings", False | |
) | |
args.num_segment = getattr(args, "num_segment", 2) | |
args.sentence_class_num = getattr(args, "sentence_class_num", 2) | |
args.sent_loss = getattr(args, "sent_loss", False) | |
args.apply_bert_init = getattr(args, "apply_bert_init", False) | |
args.activation_fn = getattr(args, "activation_fn", "relu") | |
args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") | |
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) | |
def bert_base_architecture(args): | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) | |
args.share_encoder_input_output_embed = getattr( | |
args, "share_encoder_input_output_embed", True | |
) | |
args.no_token_positional_embeddings = getattr( | |
args, "no_token_positional_embeddings", False | |
) | |
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) | |
args.num_segment = getattr(args, "num_segment", 2) | |
args.encoder_layers = getattr(args, "encoder_layers", 12) | |
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) | |
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072) | |
args.sentence_class_num = getattr(args, "sentence_class_num", 2) | |
args.sent_loss = getattr(args, "sent_loss", True) | |
args.apply_bert_init = getattr(args, "apply_bert_init", True) | |
args.activation_fn = getattr(args, "activation_fn", "gelu") | |
args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") | |
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) | |
base_architecture(args) | |
def bert_large_architecture(args): | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) | |
args.encoder_layers = getattr(args, "encoder_layers", 24) | |
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) | |
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) | |
bert_base_architecture(args) | |
def xlm_architecture(args): | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) | |
args.share_encoder_input_output_embed = getattr( | |
args, "share_encoder_input_output_embed", True | |
) | |
args.no_token_positional_embeddings = getattr( | |
args, "no_token_positional_embeddings", False | |
) | |
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) | |
args.num_segment = getattr(args, "num_segment", 1) | |
args.encoder_layers = getattr(args, "encoder_layers", 6) | |
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) | |
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) | |
args.sent_loss = getattr(args, "sent_loss", False) | |
args.activation_fn = getattr(args, "activation_fn", "gelu") | |
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) | |
args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") | |
args.apply_bert_init = getattr(args, "apply_bert_init", True) | |
base_architecture(args) | |