Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import logging | |
import numpy as np | |
from . import BaseWrapperDataset | |
logger = logging.getLogger(__name__) | |
class SubsampleDataset(BaseWrapperDataset): | |
"""Subsamples a given dataset by a specified ratio. Subsampling is done on the number of examples | |
Args: | |
dataset (~torch.utils.data.Dataset): dataset to subsample | |
size_ratio(float): the ratio to subsample to. must be between 0 and 1 (exclusive) | |
""" | |
def __init__(self, dataset, size_ratio, shuffle=False): | |
super().__init__(dataset) | |
assert size_ratio < 1 | |
self.actual_size = np.ceil(len(dataset) * size_ratio).astype(int) | |
self.indices = np.random.choice( | |
list(range(len(self.dataset))), self.actual_size, replace=False | |
) | |
self.shuffle = shuffle | |
logger.info( | |
"subsampled dataset from {} to {} (ratio={})".format( | |
len(self.dataset), self.actual_size, size_ratio | |
) | |
) | |
def __getitem__(self, index): | |
return self.dataset[self.indices[index]] | |
def __len__(self): | |
return self.actual_size | |
def collater(self, samples): | |
return self.dataset.collater(samples) | |
def sizes(self): | |
return self.dataset.sizes[self.indices] | |
def name(self): | |
return self.dataset.name | |
def num_tokens(self, index): | |
return self.dataset.num_tokens(self.indices[index]) | |
def size(self, index): | |
return self.dataset.size(self.indices[index]) | |
def ordered_indices(self): | |
"""Return an ordered list of indices. Batches will be constructed based | |
on this order.""" | |
if self.shuffle: | |
order = [np.random.permutation(len(self))] | |
else: | |
order = [np.arange(len(self))] | |
order.append(self.sizes) | |
return np.lexsort(order) | |
def prefetch(self, indices): | |
self.dataset.prefetch(self.indices[indices]) | |