Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import logging | |
from collections import OrderedDict | |
from typing import Dict, Sequence | |
import numpy as np | |
from . import FairseqDataset, LanguagePairDataset | |
logger = logging.getLogger(__name__) | |
class RoundRobinZipDatasets(FairseqDataset): | |
"""Zip multiple :class:`~fairseq.data.FairseqDataset` instances together. | |
Shorter datasets are repeated in a round-robin fashion to match the length | |
of the longest one. | |
Args: | |
datasets (Dict[~fairseq.data.FairseqDataset]): a dictionary of | |
:class:`~fairseq.data.FairseqDataset` instances. | |
eval_key (str, optional): a key used at evaluation time that causes | |
this instance to pass-through batches from *datasets[eval_key]*. | |
""" | |
def __init__(self, datasets, eval_key=None): | |
super().__init__() | |
if isinstance(datasets, dict): | |
datasets = OrderedDict(datasets) | |
assert isinstance(datasets, OrderedDict) | |
assert datasets, "Can't make a RoundRobinZipDatasets out of nothing" | |
for dataset in datasets.values(): | |
assert isinstance(dataset, FairseqDataset) | |
self.datasets = datasets | |
self.eval_key = eval_key | |
self.longest_dataset_key = max(datasets, key=lambda k: len(datasets[k])) | |
self.longest_dataset = datasets[self.longest_dataset_key] | |
self._ordered_indices: Dict[str, Sequence[int]] = None | |
def _map_index(self, key, index): | |
assert ( | |
self._ordered_indices is not None | |
), "Must call RoundRobinZipDatasets.ordered_indices() first" | |
o = self._ordered_indices[key] | |
return o[index % len(o)] | |
def __getitem__(self, index): | |
if self.eval_key is None: | |
return OrderedDict( | |
[ | |
(key, dataset[self._map_index(key, index)]) | |
for key, dataset in self.datasets.items() | |
] | |
) | |
else: | |
# at evaluation time it's useful to pass-through batches from a single key | |
return self.datasets[self.eval_key][self._map_index(self.eval_key, index)] | |
def __len__(self): | |
if self._ordered_indices is not None: | |
return len(self._ordered_indices[self.longest_dataset_key]) | |
return len(self.longest_dataset) | |
def collater(self, samples): | |
"""Merge a list of samples to form a mini-batch.""" | |
if len(samples) == 0: | |
return None | |
if self.eval_key is None: | |
return OrderedDict( | |
[ | |
(key, dataset.collater([sample[key] for sample in samples])) | |
for key, dataset in self.datasets.items() | |
] | |
) | |
else: | |
# at evaluation time it's useful to pass-through batches from a single key | |
return self.datasets[self.eval_key].collater(samples) | |
def num_tokens(self, index): | |
"""Return an example's length (number of tokens), used for batching.""" | |
# TODO make it configurable whether to use max() or sum() here | |
return max( | |
dataset.num_tokens(self._map_index(key, index)) | |
for key, dataset in self.datasets.items() | |
) | |
def size(self, index): | |
"""Return an example's size as a float or tuple. This value is used when | |
filtering a dataset with ``--max-positions``.""" | |
return { | |
key: dataset.size(self._map_index(key, index)) | |
for key, dataset in self.datasets.items() | |
} | |
def ordered_indices(self): | |
"""Ordered indices for batching.""" | |
if self._ordered_indices is None: | |
# Call the underlying dataset's ordered_indices() here, so that we | |
# get the same random ordering as we would have from using the | |
# underlying sub-datasets directly. | |
self._ordered_indices = OrderedDict( | |
[ | |
(key, dataset.ordered_indices()) | |
for key, dataset in self.datasets.items() | |
] | |
) | |
return np.arange(len(self)) | |
def filter_indices_by_size(self, indices, max_positions=None): | |
""" | |
Filter each sub-dataset independently, then update the round robin to work | |
on the filtered sub-datasets. | |
""" | |
def _deep_until_language_pair(dataset): | |
if isinstance(dataset, LanguagePairDataset): | |
return dataset | |
if hasattr(dataset, "tgt_dataset"): | |
return _deep_until_language_pair(dataset.tgt_dataset) | |
if hasattr(dataset, "dataset"): | |
return _deep_until_language_pair(dataset.dataset) | |
raise Exception(f"Don't know how to unwrap this dataset: {dataset}") | |
if not isinstance(max_positions, dict): | |
max_positions = {k: max_positions for k in self.datasets.keys()} | |
ignored_some = False | |
for key, dataset in self.datasets.items(): | |
dataset = _deep_until_language_pair(dataset) | |
self._ordered_indices[key], ignored = dataset.filter_indices_by_size( | |
self._ordered_indices[key], max_positions[key] | |
) | |
if len(ignored) > 0: | |
ignored_some = True | |
logger.warning( | |
f"{len(ignored)} samples from {key} have invalid sizes and will be skipped, " | |
f"max_positions={max_positions[key]}, first few sample ids={ignored[:10]}" | |
) | |
# Since we are modifiying in place the _ordered_indices, | |
# it's not possible anymore to return valid ignored indices. | |
# Hopefully the extra debug information print above should be enough to debug. | |
# Ideally we would receive ignore_invalid_inputs so that we could have | |
# a proper error message. | |
return (np.arange(len(self)), [0] if ignored_some else []) | |
def supports_prefetch(self): | |
return all( | |
getattr(dataset, "supports_prefetch", False) | |
for dataset in self.datasets.values() | |
) | |
def prefetch(self, indices): | |
for key, dataset in self.datasets.items(): | |
dataset.prefetch([self._map_index(key, index) for index in indices]) | |