Spaces:
Sleeping
Sleeping
File size: 21,220 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
# coding=utf-8
# Copyright 2020 Google and DeepMind.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import argparse
from transformers import BertTokenizer, XLMTokenizer, XLMRobertaTokenizer
import os
from collections import defaultdict
import csv
import random
import os
import shutil
import json
TOKENIZERS = {
'bert': BertTokenizer,
'xlm': XLMTokenizer,
'xlmr': XLMRobertaTokenizer,
}
def panx_tokenize_preprocess(args):
def _preprocess_one_file(infile, outfile, idxfile, tokenizer, max_len):
if not os.path.exists(infile):
print(f'{infile} not exists')
return 0
special_tokens_count = 3 if isinstance(tokenizer, XLMRobertaTokenizer) else 2
max_seq_len = max_len - special_tokens_count
subword_len_counter = idx = 0
with open(infile, "rt") as fin, open(outfile, "w") as fout, open(idxfile, "w") as fidx:
for line in fin:
line = line.strip()
if not line:
fout.write('\n')
fidx.write('\n')
idx += 1
subword_len_counter = 0
continue
items = line.split()
token = items[0].strip()
if len(items) == 2:
label = items[1].strip()
else:
label = 'O'
current_subwords_len = len(tokenizer.tokenize(token))
if (current_subwords_len == 0 or current_subwords_len > max_seq_len) and len(token) != 0:
token = tokenizer.unk_token
current_subwords_len = 1
if (subword_len_counter + current_subwords_len) > max_seq_len:
fout.write(f"\n{token}\t{label}\n")
fidx.write(f"\n{idx}\n")
subword_len_counter = current_subwords_len
else:
fout.write(f"{token}\t{label}\n")
fidx.write(f"{idx}\n")
subword_len_counter += current_subwords_len
return 1
model_type = args.model_type
tokenizer = TOKENIZERS[model_type].from_pretrained(args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None)
for lang in args.languages.split(','):
out_dir = os.path.join(args.output_dir, lang)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
if lang == 'en':
files = ['dev', 'test', 'train']
else:
files = ['dev', 'test']
for file in files:
infile = os.path.join(args.data_dir, f'{file}-{lang}.tsv')
outfile = os.path.join(out_dir, "{}.{}".format(file, args.model_name_or_path))
idxfile = os.path.join(out_dir, "{}.{}.idx".format(file, args.model_name_or_path))
if os.path.exists(outfile) and os.path.exists(idxfile):
print(f'{outfile} and {idxfile} exist')
else:
code = _preprocess_one_file(infile, outfile, idxfile, tokenizer, args.max_len)
if code > 0:
print(f'finish preprocessing {outfile}')
def panx_preprocess(args):
def _process_one_file(infile, outfile):
lines = open(infile, 'r').readlines()
if lines[-1].strip() == '':
lines = lines[:-1]
with open(outfile, 'w') as fout:
for l in lines:
items = l.strip().split('\t')
if len(items) == 2:
label = items[1].strip()
idx = items[0].find(':')
if idx != -1:
token = items[0][idx+1:].strip()
# if 'test' in infile:
# fout.write(f'{token}\n')
# else:
# fout.write(f'{token}\t{label}\n')
fout.write(f'{token}\t{label}\n')
else:
fout.write('\n')
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
langs = 'ar he vi id jv ms tl eu ml ta te af nl en de el bn hi mr ur fa fr it pt es bg ru ja ka ko th sw yo my zh kk tr et fi hu'.split(' ')
for lg in langs:
for split in ['train', 'test', 'dev']:
infile = os.path.join(args.data_dir, f'{lg}-{split}')
outfile = os.path.join(args.output_dir, f'{split}-{lg}.tsv')
_process_one_file(infile, outfile)
def udpos_tokenize_preprocess(args):
def _preprocess_one_file(infile, outfile, idxfile, tokenizer, max_len):
if not os.path.exists(infile):
print(f'{infile} does not exist')
return
subword_len_counter = idx = 0
special_tokens_count = 3 if isinstance(tokenizer, XLMRobertaTokenizer) else 2
max_seq_len = max_len - special_tokens_count
with open(infile, "rt") as fin, open(outfile, "w") as fout, open(idxfile, "w") as fidx:
for line in fin:
line = line.strip()
if len(line) == 0 or line == '':
fout.write('\n')
fidx.write('\n')
idx += 1
subword_len_counter = 0
continue
items = line.split()
if len(items) == 2:
label = items[1].strip()
else:
label = "X"
token = items[0].strip()
current_subwords_len = len(tokenizer.tokenize(token))
if (current_subwords_len == 0 or current_subwords_len > max_seq_len) and len(token) != 0:
token = tokenizer.unk_token
current_subwords_len = 1
if (subword_len_counter + current_subwords_len) > max_seq_len:
fout.write(f"\n{token}\t{label}\n")
fidx.write(f"\n{idx}\n")
subword_len_counter = current_subwords_len
else:
fout.write(f"{token}\t{label}\n")
fidx.write(f"{idx}\n")
subword_len_counter += current_subwords_len
model_type = args.model_type
tokenizer = TOKENIZERS[model_type].from_pretrained(args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None)
for lang in args.languages.split(','):
out_dir = os.path.join(args.output_dir, lang)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
if lang == 'en':
files = ['dev', 'test', 'train']
else:
files = ['dev', 'test']
for file in files:
infile = os.path.join(args.data_dir, "{}-{}.tsv".format(file, lang))
outfile = os.path.join(out_dir, "{}.{}".format(file, args.model_name_or_path))
idxfile = os.path.join(out_dir, "{}.{}.idx".format(file, args.model_name_or_path))
if os.path.exists(outfile) and os.path.exists(idxfile):
print(f'{outfile} and {idxfile} exist')
else:
_preprocess_one_file(infile, outfile, idxfile, tokenizer, args.max_len)
print(f'finish preprocessing {outfile}')
def udpos_preprocess(args):
def _read_one_file(file):
data = []
sent, tag, lines = [], [], []
for line in open(file, 'r'):
items = line.strip().split('\t')
if len(items) != 10:
empty = all(w == '_' for w in sent)
num_empty = sum([int(w == '_') for w in sent])
if num_empty == 0 or num_empty < len(sent) - 1:
data.append((sent, tag, lines))
sent, tag, lines = [], [], []
else:
sent.append(items[1].strip())
tag.append(items[3].strip())
lines.append(line.strip())
assert len(sent) == int(items[0]), 'line={}, sent={}, tag={}'.format(line, sent, tag)
return data
def isfloat(value):
try:
float(value)
return True
except ValueError:
return False
def remove_empty_space(data):
new_data = {}
for split in data:
new_data[split] = []
for sent, tag, lines in data[split]:
new_sent = [''.join(w.replace('\u200c', '').split(' ')) for w in sent]
lines = [line.replace('\u200c', '') for line in lines]
assert len(" ".join(new_sent).split(' ')) == len(tag)
new_data[split].append((new_sent, tag, lines))
return new_data
def check_file(file):
for i, l in enumerate(open(file)):
items = l.strip().split('\t')
assert len(items[0].split(' ')) == len(items[1].split(' ')), 'idx={}, line={}'.format(i, l)
def _write_files(data, output_dir, lang, suffix):
for split in data:
if len(data[split]) > 0:
prefix = os.path.join(output_dir, f'{split}-{lang}')
if suffix == 'mt':
with open(prefix + '.mt.tsv', 'w') as fout:
for idx, (sent, tag, _) in enumerate(data[split]):
newline = '\n' if idx != len(data[split]) - 1 else ''
# if split == 'test':
# fout.write('{}{}'.format(' '.join(sent, newline)))
# else:
# fout.write('{}\t{}{}'.format(' '.join(sent), ' '.join(tag), newline))
fout.write('{}\t{}{}'.format(' '.join(sent), ' '.join(tag), newline))
check_file(prefix + '.mt.tsv')
print(' - finish checking ' + prefix + '.mt.tsv')
elif suffix == 'tsv':
with open(prefix + '.tsv', 'w') as fout:
for sidx, (sent, tag, _) in enumerate(data[split]):
for widx, (w, t) in enumerate(zip(sent, tag)):
newline = '' if (sidx == len(data[split]) - 1) and (widx == len(sent) - 1) else '\n'
# if split == 'test':
# fout.write('{}{}'.format(w, newline))
# else:
# fout.write('{}\t{}{}'.format(w, t, newline))
fout.write('{}\t{}{}'.format(w, t, newline))
fout.write('\n')
elif suffix == 'conll':
with open(prefix + '.conll', 'w') as fout:
for _, _, lines in data[split]:
for l in lines:
fout.write(l.strip() + '\n')
fout.write('\n')
print(f'finish writing file to {prefix}.{suffix}')
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
languages = 'af ar bg de el en es et eu fa fi fr he hi hu id it ja kk ko mr nl pt ru ta te th tl tr ur vi yo zh'.split(' ')
for root, dirs, files in os.walk(args.data_dir):
lg = root.strip().split('/')[-1]
if root == args.data_dir or lg not in languages:
continue
data = {k: [] for k in ['train', 'dev', 'test']}
for f in sorted(files):
if f.endswith('conll'):
file = os.path.join(root, f)
examples = _read_one_file(file)
if 'train' in f:
data['train'].extend(examples)
elif 'dev' in f:
data['dev'].extend(examples)
elif 'test' in f:
data['test'].extend(examples)
else:
print('split not found: ', file)
print(' - finish reading {}, {}'.format(file, [(k, len(v)) for k,v in data.items()]))
data = remove_empty_space(data)
for sub in ['tsv']:
_write_files(data, args.output_dir, lg, sub)
def pawsx_preprocess(args):
def _preprocess_one_file(infile, outfile, remove_label=False):
data = []
for i, line in enumerate(open(infile, 'r')):
if i == 0:
continue
items = line.strip().split('\t')
sent1 = ' '.join(items[1].strip().split(' '))
sent2 = ' '.join(items[2].strip().split(' '))
label = items[3]
data.append([sent1, sent2, label])
with open(outfile, 'w') as fout:
writer = csv.writer(fout, delimiter='\t', quoting=csv.QUOTE_NONE, quotechar='')
for sent1, sent2, label in data:
# if remove_label:
# writer.writerow([sent1, sent2])
# else:
# writer.writerow([sent1, sent2, label])
writer.writerow([sent1, sent2, label])
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
split2file = {'train': 'train', 'test': 'test_2k', 'dev': 'dev_2k'}
for lang in ['en', 'de', 'es', 'fr', 'ja', 'ko', 'zh']:
for split in ['train', 'test', 'dev']:
if split == 'train' and lang != 'en':
continue
file = split2file[split]
infile = os.path.join(args.data_dir, lang, "{}.tsv".format(file))
outfile = os.path.join(args.output_dir, "{}-{}.tsv".format(split, lang))
_preprocess_one_file(infile, outfile, remove_label=(split == 'test'))
print(f'finish preprocessing {outfile}')
def xnli_preprocess(args):
def _preprocess_file(infile, output_dir, split):
all_langs = defaultdict(list)
for i, line in enumerate(open(infile, 'r')):
if i == 0:
continue
items = line.strip().split('\t')
lang = items[0].strip()
label = "contradiction" if items[1].strip() == "contradictory" else items[1].strip()
sent1 = ' '.join(items[6].strip().split(' '))
sent2 = ' '.join(items[7].strip().split(' '))
all_langs[lang].append((sent1, sent2, label))
print(f'# langs={len(all_langs)}')
for lang, pairs in all_langs.items():
outfile = os.path.join(output_dir, '{}-{}.tsv'.format(split, lang))
with open(outfile, 'w') as fout:
writer = csv.writer(fout, delimiter='\t', quoting=csv.QUOTE_NONE, quotechar='')
for (sent1, sent2, label) in pairs:
# if split == 'test':
# writer.writerow([sent1, sent2])
# else:
# writer.writerow([sent1, sent2, label])
writer.writerow([sent1, sent2, label])
print(f'finish preprocess {outfile}')
def _preprocess_train_file(infile, outfile):
with open(outfile, 'w') as fout:
writer = csv.writer(fout, delimiter='\t', quoting=csv.QUOTE_NONE, quotechar='')
for i, line in enumerate(open(infile, 'r')):
if i == 0:
continue
items = line.strip().split('\t')
sent1 = ' '.join(items[0].strip().split(' '))
sent2 = ' '.join(items[1].strip().split(' '))
label = "contradiction" if items[2].strip() == "contradictory" else items[2].strip()
writer.writerow([sent1, sent2, label])
print(f'finish preprocess {outfile}')
infile = os.path.join(args.data_dir, 'XNLI-MT-1.0/multinli/multinli.train.en.tsv')
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
outfile = os.path.join(args.output_dir, 'train-en.tsv')
_preprocess_train_file(infile, outfile)
for split in ['test', 'dev']:
infile = os.path.join(args.data_dir, 'XNLI-1.0/xnli.{}.tsv'.format(split))
print(f'reading file {infile}')
_preprocess_file(infile, args.output_dir, split)
def tatoeba_preprocess(args):
lang3_dict = {
'afr':'af', 'ara':'ar', 'bul':'bg', 'ben':'bn',
'deu':'de', 'ell':'el', 'spa':'es', 'est':'et',
'eus':'eu', 'pes':'fa', 'fin':'fi', 'fra':'fr',
'heb':'he', 'hin':'hi', 'hun':'hu', 'ind':'id',
'ita':'it', 'jpn':'ja', 'jav':'jv', 'kat':'ka',
'kaz':'kk', 'kor':'ko', 'mal':'ml', 'mar':'mr',
'nld':'nl', 'por':'pt', 'rus':'ru', 'swh':'sw',
'tam':'ta', 'tel':'te', 'tha':'th', 'tgl':'tl',
'tur':'tr', 'urd':'ur', 'vie':'vi', 'cmn':'zh',
'eng':'en',
}
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
for sl3, sl2 in lang3_dict.items():
if sl3 != 'eng':
src_file = f'{args.data_dir}/tatoeba.{sl3}-eng.{sl3}'
tgt_file = f'{args.data_dir}/tatoeba.{sl3}-eng.eng'
src_out = f'{args.output_dir}/{sl2}-en.{sl2}'
tgt_out = f'{args.output_dir}/{sl2}-en.en'
shutil.copy(src_file, src_out)
tgts = [l.strip() for l in open(tgt_file)]
idx = range(len(tgts))
data = zip(tgts, idx)
with open(tgt_out, 'w') as ftgt:
for t, i in sorted(data, key=lambda x: x[0]):
ftgt.write(f'{t}\n')
def xquad_preprocess(args):
# Remove the test annotations to prevent accidental cheating
# remove_qa_test_annotations(args.data_dir)
pass
def mlqa_preprocess(args):
# Remove the test annotations to prevent accidental cheating
# remove_qa_test_annotations(args.data_dir)
pass
def tydiqa_preprocess(args):
LANG2ISO = {'arabic': 'ar', 'bengali': 'bn', 'english': 'en', 'finnish': 'fi',
'indonesian': 'id', 'korean': 'ko', 'russian': 'ru',
'swahili': 'sw', 'telugu': 'te'}
assert os.path.exists(args.data_dir)
train_file = os.path.join(args.data_dir, 'tydiqa-goldp-v1.1-train.json')
os.makedirs(args.output_dir, exist_ok=True)
# Split the training file into language-specific files
lang2data = defaultdict(list)
with open(train_file, 'r') as f_in:
data = json.load(f_in)
version = data['version']
for doc in data['data']:
for par in doc['paragraphs']:
context = par['context']
for qa in par['qas']:
question = qa['question']
question_id = qa['id']
example_lang = question_id.split('-')[0]
q_id = question_id.split('-')[-1]
for answer in qa['answers']:
a_start, a_text = answer['answer_start'], answer['text']
a_end = a_start + len(a_text)
assert context[a_start:a_end] == a_text
lang2data[example_lang].append({'paragraphs': [{
'context': context,
'qas': [{'answers': qa['answers'],
'question': question,
'id': q_id}]}]})
for lang, data in lang2data.items():
out_file = os.path.join(
args.output_dir, 'tydiqa.%s.train.json' % LANG2ISO[lang])
with open(out_file, 'w') as f:
json.dump({'data': data, 'version': version}, f)
# Rename the dev files
dev_dir = os.path.join(args.data_dir, 'tydiqa-goldp-v1.1-dev')
assert os.path.exists(dev_dir)
for lang, iso in LANG2ISO.items():
src_file = os.path.join(dev_dir, 'tydiqa-goldp-dev-%s.json' % lang)
dst_file = os.path.join(dev_dir, 'tydiqa.%s.dev.json' % iso)
os.rename(src_file, dst_file)
# Remove the test annotations to prevent accidental cheating
# remove_qa_test_annotations(dev_dir)
def remove_qa_test_annotations(test_dir):
assert os.path.exists(test_dir)
for file_name in os.listdir(test_dir):
new_data = []
test_file = os.path.join(test_dir, file_name)
with open(test_file, 'r') as f:
data = json.load(f)
version = data['version']
for doc in data['data']:
for par in doc['paragraphs']:
context = par['context']
for qa in par['qas']:
question = qa['question']
question_id = qa['id']
for answer in qa['answers']:
a_start, a_text = answer['answer_start'], answer['text']
a_end = a_start + len(a_text)
assert context[a_start:a_end] == a_text
new_data.append({'paragraphs': [{
'context': context,
'qas': [{'answers': [{'answer_start': 0, 'text': ''}],
'question': question,
'id': question_id}]}]})
with open(test_file, 'w') as f:
json.dump({'data': new_data, 'version': version}, f)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output data dir where any processed files will be written to.")
parser.add_argument("--task", default="panx", type=str, required=True,
help="The task name")
parser.add_argument("--model_name_or_path", default="bert-base-multilingual-cased", type=str,
help="The pre-trained model")
parser.add_argument("--model_type", default="bert", type=str,
help="model type")
parser.add_argument("--max_len", default=512, type=int,
help="the maximum length of sentences")
parser.add_argument("--do_lower_case", action='store_true',
help="whether to do lower case")
parser.add_argument("--cache_dir", default=None, type=str,
help="cache directory")
parser.add_argument("--languages", default="en", type=str,
help="process language")
parser.add_argument("--remove_last_token", action='store_true',
help="whether to remove the last token")
parser.add_argument("--remove_test_label", action='store_true',
help="whether to remove test set label")
args = parser.parse_args()
if args.task == 'panx_tokenize':
panx_tokenize_preprocess(args)
if args.task == 'panx':
panx_preprocess(args)
if args.task == 'udpos_tokenize':
udpos_tokenize_preprocess(args)
if args.task == 'udpos':
udpos_preprocess(args)
if args.task == 'pawsx':
pawsx_preprocess(args)
if args.task == 'xnli':
xnli_preprocess(args)
if args.task == 'tatoeba':
tatoeba_preprocess(args)
if args.task == 'xquad':
xquad_preprocess(args)
if args.task == 'mlqa':
mlqa_preprocess(args)
if args.task == 'tydiqa':
tydiqa_preprocess(args)
|