File size: 21,362 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# coding=utf-8
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MMBT model. """


import logging

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss

from .file_utils import add_start_docstrings


logger = logging.getLogger(__name__)


class ModalEmbeddings(nn.Module):
    """Generic Modal Embeddings which takes in an encoder, and a transformer embedding.
    """

    def __init__(self, config, encoder, embeddings):
        super().__init__()
        self.config = config
        self.encoder = encoder
        self.proj_embeddings = nn.Linear(config.modal_hidden_size, config.hidden_size)
        self.position_embeddings = embeddings.position_embeddings
        self.token_type_embeddings = embeddings.token_type_embeddings
        self.word_embeddings = embeddings.word_embeddings
        self.LayerNorm = embeddings.LayerNorm
        self.dropout = nn.Dropout(p=config.hidden_dropout_prob)

    def forward(self, input_modal, start_token=None, end_token=None, position_ids=None, token_type_ids=None):
        token_embeddings = self.proj_embeddings(self.encoder(input_modal))
        seq_length = token_embeddings.size(1)

        if start_token is not None:
            start_token_embeds = self.word_embeddings(start_token)
            seq_length += 1
            token_embeddings = torch.cat([start_token_embeds.unsqueeze(1), token_embeddings], dim=1)

        if end_token is not None:
            end_token_embeds = self.word_embeddings(end_token)
            seq_length += 1
            token_embeddings = torch.cat([token_embeddings, end_token_embeds.unsqueeze(1)], dim=1)

        if position_ids is None:
            position_ids = torch.arange(seq_length, dtype=torch.long, device=input_modal.device)
            position_ids = position_ids.unsqueeze(0).expand(input_modal.size(0), seq_length)

        if token_type_ids is None:
            token_type_ids = torch.zeros(
                (input_modal.size(0), seq_length), dtype=torch.long, device=input_modal.device
            )

        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)
        embeddings = token_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


MMBT_START_DOCSTRING = r"""    MMBT model was proposed in
    `Supervised Multimodal Bitransformers for Classifying Images and Text`_
    by Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, Davide Testuggine.
    It's a supervised multimodal bitransformer model that fuses information from text and other image encoders,
    and obtain state-of-the-art performance on various multimodal classification benchmark tasks.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`Supervised Multimodal Bitransformers for Classifying Images and Text`:
        https://github.com/facebookresearch/mmbt

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
        config (:class:`~transformers.MMBTConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
        transformer (:class: `~nn.Module`): A text transformer that is used by MMBT.
            It should have embeddings, encoder, and pooler attributes.
        encoder (:class: `~nn.Module`): Encoder for the second modality.
            It should take in a batch of modal inputs and return k, n dimension embeddings.
"""

MMBT_INPUTS_DOCSTRING = r"""    Inputs:
        **input_modal**: ``torch.FloatTensor`` of shape ``(batch_size, ***)``:
            The other modality data. It will be the shape that the encoder for that type expects.
            e.g. With an Image Encoder, the shape would be (batch_size, channels, height, width)
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            It does not expect [CLS] token to be added as it's appended to the end of other modality embeddings.
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **modal_start_tokens**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Optional start token to be added to Other Modality Embedding. [CLS] Most commonly used for Classification tasks.
        **modal_end_tokens**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Optional end token to be added to Other Modality Embedding. [SEP] Most commonly used.
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Segment token indices to indicate different portions of the inputs.
        **modal_token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, modal_sequence_length)``:
            Segment token indices to indicate different portions of the non-text modality.
            The embeddings from these tokens will be summed with the respective token embeddings for the non-text modality.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
        **modal_position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, modal_sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings for the non-text modality.
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
        **inputs_embeds**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, embedding_dim)``:
            Optionally, instead of passing ``input_ids`` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
        **encoder_hidden_states**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``:
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model
            is configured as a decoder.
        **encoder_attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask
            is used in the cross-attention if the model is configured as a decoder.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
"""


@add_start_docstrings(
    "The bare MMBT Model outputting raw hidden-states without any specific head on top.",
    MMBT_START_DOCSTRING,
    MMBT_INPUTS_DOCSTRING,
)
class MMBTModel(nn.Module):
    r"""
        Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
            **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
                Sequence of hidden-states at the output of the last layer of the model.
            **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
                Last layer hidden-state of the first token of the sequence (classification token)
                further processed by a Linear layer and a Tanh activation function. The Linear
                layer weights are trained from the next sentence prediction (classification)
                objective during Bert pretraining. This output is usually *not* a good summary
                of the semantic content of the input, you're often better with averaging or pooling
                the sequence of hidden-states for the whole input sequence.
            **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
                list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
                of shape ``(batch_size, sequence_length, hidden_size)``:
                Hidden-states of the model at the output of each layer plus the initial embedding outputs.
            **attentions**: (`optional`, returned when ``config.output_attentions=True``)
                list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
                Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

        Examples::

            # For example purposes. Not runnable.
            transformer = BertModel.from_pretrained('bert-base-uncased')
            encoder = ImageEncoder(args)
            mmbt = MMBTModel(config, transformer, encoder)
        """

    def __init__(self, config, transformer, encoder):
        super().__init__()
        self.config = config
        self.transformer = transformer
        self.modal_encoder = ModalEmbeddings(config, encoder, transformer.embeddings)

    def forward(
        self,
        input_modal,
        input_ids=None,
        modal_start_tokens=None,
        modal_end_tokens=None,
        attention_mask=None,
        token_type_ids=None,
        modal_token_type_ids=None,
        position_ids=None,
        modal_position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
    ):

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_txt_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_txt_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        modal_embeddings = self.modal_encoder(
            input_modal,
            start_token=modal_start_tokens,
            end_token=modal_end_tokens,
            position_ids=modal_position_ids,
            token_type_ids=modal_token_type_ids,
        )

        input_modal_shape = modal_embeddings.size()[:-1]

        if token_type_ids is None:
            token_type_ids = torch.ones(input_txt_shape, dtype=torch.long, device=device)

        txt_embeddings = self.transformer.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )

        embedding_output = torch.cat([modal_embeddings, txt_embeddings], 1)

        input_shape = embedding_output.size()[:-1]

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        else:
            attention_mask = torch.cat(
                [torch.ones(input_modal_shape, device=device, dtype=torch.long), attention_mask], dim=1
            )

        if encoder_attention_mask is None:
            encoder_attention_mask = torch.ones(input_shape, device=device)
        else:
            encoder_attention_mask = torch.cat(
                [torch.ones(input_modal_shape, device=device), encoder_attention_mask], dim=1
            )

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]

        # Provided a padding mask of dimensions [batch_size, seq_length]
        # - if the model is a decoder, apply a causal mask in addition to the padding mask
        # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if attention_mask.dim() == 2:
            if self.config.is_decoder:
                batch_size, seq_length = input_shape
                seq_ids = torch.arange(seq_length, device=device)
                causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
                extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
            else:
                extended_attention_mask = attention_mask[:, None, None, :]

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        # If a 2D ou 3D attention mask is provided for the cross-attention
        # we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]

        encoder_extended_attention_mask = encoder_extended_attention_mask.to(
            dtype=next(self.parameters()).dtype
        )  # fp16 compatibility
        encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = (
                    head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
                )  # We can specify head_mask for each layer
            head_mask = head_mask.to(
                dtype=next(self.parameters()).dtype
            )  # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.num_hidden_layers

        encoder_outputs = self.transformer.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
        )

        sequence_output = encoder_outputs[0]
        pooled_output = self.transformer.pooler(sequence_output)

        outputs = (sequence_output, pooled_output,) + encoder_outputs[
            1:
        ]  # add hidden_states and attentions if they are here
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value


@add_start_docstrings(
    """MMBT Model with a sequence classification/regression head on top (a linear layer on top of
                      the pooled output)""",
    MMBT_START_DOCSTRING,
    MMBT_INPUTS_DOCSTRING,
)
class MMBTForClassification(nn.Module):
    r"""
            **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
                Labels for computing the sequence classification/regression loss.
                Indices should be in ``[0, ..., config.num_labels - 1]``.
                If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
                If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

        Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
            **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
                Classification (or regression if config.num_labels==1) loss.
            **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
                Classification (or regression if config.num_labels==1) scores (before SoftMax).
            **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
                list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
                of shape ``(batch_size, sequence_length, hidden_size)``:
                Hidden-states of the model at the output of each layer plus the initial embedding outputs.
            **attentions**: (`optional`, returned when ``config.output_attentions=True``)
                list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
                Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

        Examples::

            # For example purposes. Not runnable.
            transformer = BertModel.from_pretrained('bert-base-uncased')
            encoder = ImageEncoder(args)
            model = MMBTForClassification(config, transformer, encoder)
            outputs = model(input_modal, input_ids, labels=labels)
            loss, logits = outputs[:2]
        """

    def __init__(self, config, transformer, encoder):
        super().__init__()
        self.num_labels = config.num_labels

        self.mmbt = MMBTModel(config, transformer, encoder)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

    def forward(
        self,
        input_modal,
        input_ids=None,
        modal_start_tokens=None,
        modal_end_tokens=None,
        attention_mask=None,
        token_type_ids=None,
        modal_token_type_ids=None,
        position_ids=None,
        modal_position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):

        outputs = self.mmbt(
            input_modal=input_modal,
            input_ids=input_ids,
            modal_start_tokens=modal_start_tokens,
            modal_end_tokens=modal_end_tokens,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            modal_token_type_ids=modal_token_type_ids,
            position_ids=position_ids,
            modal_position_ids=modal_position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here

        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), logits, (hidden_states), (attentions)