Spaces:
Sleeping
Sleeping
File size: 21,362 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
# coding=utf-8
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MMBT model. """
import logging
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss
from .file_utils import add_start_docstrings
logger = logging.getLogger(__name__)
class ModalEmbeddings(nn.Module):
"""Generic Modal Embeddings which takes in an encoder, and a transformer embedding.
"""
def __init__(self, config, encoder, embeddings):
super().__init__()
self.config = config
self.encoder = encoder
self.proj_embeddings = nn.Linear(config.modal_hidden_size, config.hidden_size)
self.position_embeddings = embeddings.position_embeddings
self.token_type_embeddings = embeddings.token_type_embeddings
self.word_embeddings = embeddings.word_embeddings
self.LayerNorm = embeddings.LayerNorm
self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
def forward(self, input_modal, start_token=None, end_token=None, position_ids=None, token_type_ids=None):
token_embeddings = self.proj_embeddings(self.encoder(input_modal))
seq_length = token_embeddings.size(1)
if start_token is not None:
start_token_embeds = self.word_embeddings(start_token)
seq_length += 1
token_embeddings = torch.cat([start_token_embeds.unsqueeze(1), token_embeddings], dim=1)
if end_token is not None:
end_token_embeds = self.word_embeddings(end_token)
seq_length += 1
token_embeddings = torch.cat([token_embeddings, end_token_embeds.unsqueeze(1)], dim=1)
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_modal.device)
position_ids = position_ids.unsqueeze(0).expand(input_modal.size(0), seq_length)
if token_type_ids is None:
token_type_ids = torch.zeros(
(input_modal.size(0), seq_length), dtype=torch.long, device=input_modal.device
)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = token_embeddings + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
MMBT_START_DOCSTRING = r""" MMBT model was proposed in
`Supervised Multimodal Bitransformers for Classifying Images and Text`_
by Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, Davide Testuggine.
It's a supervised multimodal bitransformer model that fuses information from text and other image encoders,
and obtain state-of-the-art performance on various multimodal classification benchmark tasks.
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
refer to the PyTorch documentation for all matter related to general usage and behavior.
.. _`Supervised Multimodal Bitransformers for Classifying Images and Text`:
https://github.com/facebookresearch/mmbt
.. _`torch.nn.Module`:
https://pytorch.org/docs/stable/nn.html#module
Parameters:
config (:class:`~transformers.MMBTConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
transformer (:class: `~nn.Module`): A text transformer that is used by MMBT.
It should have embeddings, encoder, and pooler attributes.
encoder (:class: `~nn.Module`): Encoder for the second modality.
It should take in a batch of modal inputs and return k, n dimension embeddings.
"""
MMBT_INPUTS_DOCSTRING = r""" Inputs:
**input_modal**: ``torch.FloatTensor`` of shape ``(batch_size, ***)``:
The other modality data. It will be the shape that the encoder for that type expects.
e.g. With an Image Encoder, the shape would be (batch_size, channels, height, width)
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Indices of input sequence tokens in the vocabulary.
It does not expect [CLS] token to be added as it's appended to the end of other modality embeddings.
See :func:`transformers.PreTrainedTokenizer.encode` and
:func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
**modal_start_tokens**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
Optional start token to be added to Other Modality Embedding. [CLS] Most commonly used for Classification tasks.
**modal_end_tokens**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
Optional end token to be added to Other Modality Embedding. [SEP] Most commonly used.
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Segment token indices to indicate different portions of the inputs.
**modal_token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, modal_sequence_length)``:
Segment token indices to indicate different portions of the non-text modality.
The embeddings from these tokens will be summed with the respective token embeddings for the non-text modality.
**position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Indices of positions of each input sequence tokens in the position embeddings.
**modal_position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, modal_sequence_length)``:
Indices of positions of each input sequence tokens in the position embeddings for the non-text modality.
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
**inputs_embeds**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, embedding_dim)``:
Optionally, instead of passing ``input_ids`` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
**encoder_hidden_states**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``:
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model
is configured as a decoder.
**encoder_attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
is used in the cross-attention if the model is configured as a decoder.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
"""
@add_start_docstrings(
"The bare MMBT Model outputting raw hidden-states without any specific head on top.",
MMBT_START_DOCSTRING,
MMBT_INPUTS_DOCSTRING,
)
class MMBTModel(nn.Module):
r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the output of the last layer of the model.
**pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
Last layer hidden-state of the first token of the sequence (classification token)
further processed by a Linear layer and a Tanh activation function. The Linear
layer weights are trained from the next sentence prediction (classification)
objective during Bert pretraining. This output is usually *not* a good summary
of the semantic content of the input, you're often better with averaging or pooling
the sequence of hidden-states for the whole input sequence.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
# For example purposes. Not runnable.
transformer = BertModel.from_pretrained('bert-base-uncased')
encoder = ImageEncoder(args)
mmbt = MMBTModel(config, transformer, encoder)
"""
def __init__(self, config, transformer, encoder):
super().__init__()
self.config = config
self.transformer = transformer
self.modal_encoder = ModalEmbeddings(config, encoder, transformer.embeddings)
def forward(
self,
input_modal,
input_ids=None,
modal_start_tokens=None,
modal_end_tokens=None,
attention_mask=None,
token_type_ids=None,
modal_token_type_ids=None,
position_ids=None,
modal_position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_txt_shape = input_ids.size()
elif inputs_embeds is not None:
input_txt_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
modal_embeddings = self.modal_encoder(
input_modal,
start_token=modal_start_tokens,
end_token=modal_end_tokens,
position_ids=modal_position_ids,
token_type_ids=modal_token_type_ids,
)
input_modal_shape = modal_embeddings.size()[:-1]
if token_type_ids is None:
token_type_ids = torch.ones(input_txt_shape, dtype=torch.long, device=device)
txt_embeddings = self.transformer.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
embedding_output = torch.cat([modal_embeddings, txt_embeddings], 1)
input_shape = embedding_output.size()[:-1]
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
else:
attention_mask = torch.cat(
[torch.ones(input_modal_shape, device=device, dtype=torch.long), attention_mask], dim=1
)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(input_shape, device=device)
else:
encoder_attention_mask = torch.cat(
[torch.ones(input_modal_shape, device=device), encoder_attention_mask], dim=1
)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if attention_mask.dim() == 2:
if self.config.is_decoder:
batch_size, seq_length = input_shape
seq_ids = torch.arange(seq_length, device=device)
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
else:
extended_attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
encoder_extended_attention_mask = encoder_extended_attention_mask.to(
dtype=next(self.parameters()).dtype
) # fp16 compatibility
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = (
head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
) # We can specify head_mask for each layer
head_mask = head_mask.to(
dtype=next(self.parameters()).dtype
) # switch to fload if need + fp16 compatibility
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.transformer.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
)
sequence_output = encoder_outputs[0]
pooled_output = self.transformer.pooler(sequence_output)
outputs = (sequence_output, pooled_output,) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions)
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
@add_start_docstrings(
"""MMBT Model with a sequence classification/regression head on top (a linear layer on top of
the pooled output)""",
MMBT_START_DOCSTRING,
MMBT_INPUTS_DOCSTRING,
)
class MMBTForClassification(nn.Module):
r"""
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
Labels for computing the sequence classification/regression loss.
Indices should be in ``[0, ..., config.num_labels - 1]``.
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Classification (or regression if config.num_labels==1) loss.
**logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
Classification (or regression if config.num_labels==1) scores (before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
# For example purposes. Not runnable.
transformer = BertModel.from_pretrained('bert-base-uncased')
encoder = ImageEncoder(args)
model = MMBTForClassification(config, transformer, encoder)
outputs = model(input_modal, input_ids, labels=labels)
loss, logits = outputs[:2]
"""
def __init__(self, config, transformer, encoder):
super().__init__()
self.num_labels = config.num_labels
self.mmbt = MMBTModel(config, transformer, encoder)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
def forward(
self,
input_modal,
input_ids=None,
modal_start_tokens=None,
modal_end_tokens=None,
attention_mask=None,
token_type_ids=None,
modal_token_type_ids=None,
position_ids=None,
modal_position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
):
outputs = self.mmbt(
input_modal=input_modal,
input_ids=input_ids,
modal_start_tokens=modal_start_tokens,
modal_end_tokens=modal_end_tokens,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
modal_token_type_ids=modal_token_type_ids,
position_ids=position_ids,
modal_position_ids=modal_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
return outputs # (loss), logits, (hidden_states), (attentions)
|