Spaces:
Sleeping
Sleeping
File size: 5,589 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# coding=utf-8
# Copyright 2019 Inria, Facebook AI Research and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch CamemBERT model. """
import logging
from .configuration_camembert import CamembertConfig
from .file_utils import add_start_docstrings
from .modeling_roberta import (
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
)
logger = logging.getLogger(__name__)
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
"camembert-base": "https://s3.amazonaws.com/models.huggingface.co/bert/camembert-base-pytorch_model.bin",
"umberto-commoncrawl-cased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/Musixmatch/umberto-commoncrawl-cased-v1/pytorch_model.bin",
"umberto-wikipedia-uncased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/Musixmatch/umberto-wikipedia-uncased-v1/pytorch_model.bin",
}
CAMEMBERT_START_DOCSTRING = r"""
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
usage and behavior.
Parameters:
config (:class:`~transformers.CamembertConfig`): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
@add_start_docstrings(
"The bare CamemBERT Model transformer outputting raw hidden-states without any specific head on top.",
CAMEMBERT_START_DOCSTRING,
)
class CamembertModel(RobertaModel):
"""
This class overrides :class:`~transformers.RobertaModel`. Please check the
superclass for the appropriate documentation alongside usage examples.
"""
config_class = CamembertConfig
pretrained_model_archive_map = CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP
@add_start_docstrings(
"""CamemBERT Model with a `language modeling` head on top. """, CAMEMBERT_START_DOCSTRING,
)
class CamembertForMaskedLM(RobertaForMaskedLM):
"""
This class overrides :class:`~transformers.RobertaForMaskedLM`. Please check the
superclass for the appropriate documentation alongside usage examples.
"""
config_class = CamembertConfig
pretrained_model_archive_map = CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP
@add_start_docstrings(
"""CamemBERT Model transformer with a sequence classification/regression head on top (a linear layer
on top of the pooled output) e.g. for GLUE tasks. """,
CAMEMBERT_START_DOCSTRING,
)
class CamembertForSequenceClassification(RobertaForSequenceClassification):
"""
This class overrides :class:`~transformers.RobertaForSequenceClassification`. Please check the
superclass for the appropriate documentation alongside usage examples.
"""
config_class = CamembertConfig
pretrained_model_archive_map = CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP
@add_start_docstrings(
"""CamemBERT Model with a multiple choice classification head on top (a linear layer on top of
the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
CAMEMBERT_START_DOCSTRING,
)
class CamembertForMultipleChoice(RobertaForMultipleChoice):
"""
This class overrides :class:`~transformers.RobertaForMultipleChoice`. Please check the
superclass for the appropriate documentation alongside usage examples.
"""
config_class = CamembertConfig
pretrained_model_archive_map = CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP
@add_start_docstrings(
"""CamemBERT Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
CAMEMBERT_START_DOCSTRING,
)
class CamembertForTokenClassification(RobertaForTokenClassification):
"""
This class overrides :class:`~transformers.RobertaForTokenClassification`. Please check the
superclass for the appropriate documentation alongside usage examples.
"""
config_class = CamembertConfig
pretrained_model_archive_map = CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP
@add_start_docstrings(
"""CamemBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD
(a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits` """,
CAMEMBERT_START_DOCSTRING,
)
class CamembertForQuestionAnswering(RobertaForQuestionAnswering):
"""
This class overrides :class:`~transformers.RobertaForQuestionAnswering`. Please check the
superclass for the appropriate documentation alongside usage examples.
"""
config_class = CamembertConfig
pretrained_model_archive_map = CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP
|