File size: 5,589 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# coding=utf-8
# Copyright 2019 Inria, Facebook AI Research and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch CamemBERT model. """

import logging

from .configuration_camembert import CamembertConfig
from .file_utils import add_start_docstrings
from .modeling_roberta import (
    RobertaForMaskedLM,
    RobertaForMultipleChoice,
    RobertaForQuestionAnswering,
    RobertaForSequenceClassification,
    RobertaForTokenClassification,
    RobertaModel,
)


logger = logging.getLogger(__name__)

CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
    "camembert-base": "https://s3.amazonaws.com/models.huggingface.co/bert/camembert-base-pytorch_model.bin",
    "umberto-commoncrawl-cased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/Musixmatch/umberto-commoncrawl-cased-v1/pytorch_model.bin",
    "umberto-wikipedia-uncased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/Musixmatch/umberto-wikipedia-uncased-v1/pytorch_model.bin",
}

CAMEMBERT_START_DOCSTRING = r"""

    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
    usage and behavior.

    Parameters:
        config (:class:`~transformers.CamembertConfig`): Model configuration class with all the parameters of the
            model. Initializing with a config file does not load the weights associated with the model, only the
            configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""


@add_start_docstrings(
    "The bare CamemBERT Model transformer outputting raw hidden-states without any specific head on top.",
    CAMEMBERT_START_DOCSTRING,
)
class CamembertModel(RobertaModel):
    """
    This class overrides :class:`~transformers.RobertaModel`. Please check the
    superclass for the appropriate documentation alongside usage examples.
    """

    config_class = CamembertConfig
    pretrained_model_archive_map = CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP


@add_start_docstrings(
    """CamemBERT Model with a `language modeling` head on top. """, CAMEMBERT_START_DOCSTRING,
)
class CamembertForMaskedLM(RobertaForMaskedLM):
    """
    This class overrides :class:`~transformers.RobertaForMaskedLM`. Please check the
    superclass for the appropriate documentation alongside usage examples.
    """

    config_class = CamembertConfig
    pretrained_model_archive_map = CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP


@add_start_docstrings(
    """CamemBERT Model transformer with a sequence classification/regression head on top (a linear layer
    on top of the pooled output) e.g. for GLUE tasks. """,
    CAMEMBERT_START_DOCSTRING,
)
class CamembertForSequenceClassification(RobertaForSequenceClassification):
    """
    This class overrides :class:`~transformers.RobertaForSequenceClassification`. Please check the
    superclass for the appropriate documentation alongside usage examples.
    """

    config_class = CamembertConfig
    pretrained_model_archive_map = CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP


@add_start_docstrings(
    """CamemBERT Model with a multiple choice classification head on top (a linear layer on top of
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
    CAMEMBERT_START_DOCSTRING,
)
class CamembertForMultipleChoice(RobertaForMultipleChoice):
    """
    This class overrides :class:`~transformers.RobertaForMultipleChoice`. Please check the
    superclass for the appropriate documentation alongside usage examples.
    """

    config_class = CamembertConfig
    pretrained_model_archive_map = CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP


@add_start_docstrings(
    """CamemBERT Model with a token classification head on top (a linear layer on top of
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
    CAMEMBERT_START_DOCSTRING,
)
class CamembertForTokenClassification(RobertaForTokenClassification):
    """
    This class overrides :class:`~transformers.RobertaForTokenClassification`. Please check the
    superclass for the appropriate documentation alongside usage examples.
    """

    config_class = CamembertConfig
    pretrained_model_archive_map = CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP


@add_start_docstrings(
    """CamemBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD
    (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits` """,
    CAMEMBERT_START_DOCSTRING,
)
class CamembertForQuestionAnswering(RobertaForQuestionAnswering):
    """
    This class overrides :class:`~transformers.RobertaForQuestionAnswering`. Please check the
    superclass for the appropriate documentation alongside usage examples.
    """

    config_class = CamembertConfig
    pretrained_model_archive_map = CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP